【硬件测试】基于FPGA的16psk调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR

简介: 本文介绍了基于FPGA的16PSK调制解调系统的硬件测试版本。系统在原有仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比下的性能测试。16PSK通过改变载波相位传输4比特信息,广泛应用于高速数据传输。硬件测试操作详见配套视频。开发板使用及移植方法也一并提供。

1.算法仿真效果
本文是之前写的文章:

<<基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR-CSDN博客>>

的硬件测试版本。

在系统在仿真版本基础上增加了ila在线数据采集模块,vio在线SNR设置模块,数据源模块。硬件ila测试结果如下:(完整代码运行后无水印):

vio设置SNR=35db

ca07d64e047f9c6d3a922ea7f792dd9f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

vio设置SNR=18db

68d5bd4ad9248239e5cb5c844cde00df_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

硬件测试操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
十六进制相位移键控(16PSK, 16-Phase Shift Keying)是一种数字调制技术,它通过改变载波相位来传输信息。16PSK能够在一个符号时间内传输4比特的信息,因此在高速数据传输中得到了广泛应用。

  16PSK是一种相位调制技术,其中载波信号的相位根据要传输的信息发生改变。在16PSK中,一个符号可以表示4比特的信息,即每个符号有16种不同的相位状态。在16PSK中,每个符号可以表示16种不同的相位状态,这16个状态均匀分布在单位圆上,形成一个16点的星座图。每个符号对应于4比特的信息,即:

818cf3224bf223f7ef0c3cf3c0799e51_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    首先,需要将要传输的比特流转换成16个相位状态之一。假设信息比特序列为{bi​},则将每4比特映射到一个相位状态上。映射规则如下:

3bbf42a58f50d686b97293b1e8349fe1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

16PSK的解调过程主要包括匹配滤波和决策两个步骤。

3.Verilog核心程序

```module tops_hdw(

input i_clk,
input i_rst,
output reg [3:0] led
);

wire o_msg;

//产生模拟测试数据
signal signal_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.o_bits(o_msg)
);

//设置SNR
wire signed[7:0]o_SNR;
vio_0 your_instance_name (
.clk(i_clk), // input wire clk
.probe_out0(o_SNR) // output wire [7 : 0] probe_out0
);

wire[2:0]o_ISET;
wire signed[15:0]o_I16psk;
wire signed[15:0]o_Q16psk;
wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;
wire signed[31:0]o_mod_T;
wire signed[15:0]o_Nmod_T;
wire signed[31:0]o_modc_R;
wire signed[31:0]o_mods_R;
wire signed[31:0]o_Ifir_R;
wire signed[31:0]o_Qfir_R;
wire [2:0]o_wbits;
wire o_bits;
wire[1:0]o_rec2;
wire signed[31:0]o_error_num;
wire signed[31:0]o_total_num;
TOPS_16PSK TOPS_16PSK_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.i_SNR (o_SNR),
.i_dat (o_msg),
.o_ISET (o_ISET),
.o_I16psk(o_I16psk),
.o_Q16psk(o_Q16psk),
.o_Ifir_T (o_Ifir_T),
.o_Qfir_T (o_Qfir_T),
.o_mod_T (o_mod_T),
.o_Nmod_T(o_Nmod_T),
.o_modc_R (o_modc_R),
.o_mods_R (o_mods_R),
.o_Ifir_R (o_Ifir_R),
.o_Qfir_R (o_Qfir_R),
.o_wbits(o_wbits),
.o_bits (o_bits),
.o_error_num(o_error_num),
.o_total_num(o_total_num),
.o_rec2(o_rec2),
.o_flag(o_flag)
);

//ila篇内测试分析模块
ila_0 ila_u (
.clk(i_clk), // input wire clk
.probe0({
o_msg,o_SNR,//9
o_Ifir_T[15:6], o_Qfir_T[15:6],o_Nmod_T[15:6],//36
o_modc_R[27:12],o_mods_R[27:12],o_Ifir_R[27:12],o_Qfir_R[27:12],//64
o_bits,o_rec2,
o_error_num,o_total_num,//64
o_flag
})
);

endmodule
0sj_032m

```

4.开发板使用说明和如何移植不同的开发板
注意:硬件片内测试是指发射接收均在一个板子内完成,因此不需要定时同步模块。

在本课题中,使用的开发板是:

30bb7015eae1c855dedc58f7d8d7a18b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

如果你的开发板和我的不一样,可以参考代码包中的程序移植方法进行移植:

97976de3358ca2fca0938c67c907c9d4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
30天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
138 69
|
6天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。
23 7
|
13天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的QPSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的QPSK调制解调系统的硬件实现与仿真效果。系统包含测试平台(testbench)、高斯信道模块、误码率统计模块,支持不同SNR设置,并增加了ILA在线数据采集和VIO在线SNR设置功能。通过硬件测试验证了系统在不同信噪比下的性能,提供了详细的模块原理及Verilog代码示例。开发板使用说明和移植方法也一并给出,确保用户能顺利在不同平台上复现该系统。
54 15
|
21天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2FSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的2FSK调制解调系统,包含高斯信道、误码率统计模块及testbench。系统增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同SNR下的硬件测试,并提供操作视频指导。理论部分涵盖频移键控(FSK)原理,包括相位连续与不连续FSK信号的特点及功率谱密度特性。Verilog代码实现了FSK调制解调的核心功能,支持在不同开发板上移植。硬件测试结果展示了不同SNR下的性能表现。
64 6
|
1月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
69 26
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
71 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
71 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
53 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
65 4
|
3月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
73 16

热门文章

最新文章