【硬件测试】基于FPGA的QPSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR

简介: 本文介绍了基于FPGA的QPSK调制解调系统的硬件实现与仿真效果。系统包含测试平台(testbench)、高斯信道模块、误码率统计模块,支持不同SNR设置,并增加了ILA在线数据采集和VIO在线SNR设置功能。通过硬件测试验证了系统在不同信噪比下的性能,提供了详细的模块原理及Verilog代码示例。开发板使用说明和移植方法也一并给出,确保用户能顺利在不同平台上复现该系统。

1.算法仿真效果
本文是之前写的文章

基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR_fpga qpsk-CSDN博客

的硬件片内测试版本。

系统在仿真版本基础上增加了ila在线数据采集模块,vio在线SNR设置模块,数据源模块。

硬件ila测试结果如下:(完整代码运行后无水印):

vio设置SNR=5db

402555028b4f708821d1067756248132_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

vio设置SNR=10db

384a9bf491bcf55fb51ad5fb70b2ca19_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

vio设置SNR=15db

bf5791f3586f59cf79fa7d6f79a13fbc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

硬件测试操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
QPSK是一种数字调制方式,它将两个二进制比特映射到一个符号上,使得每个符号代表四种可能的相位状态。因此,QPSK调制解调系统可以实现更高的传输速率和更高的频谱效率。基于FPGA的QPSK调制解调系统通常由以下几个模块组成:数据生成模块:生成要传输的二进制数据流。

QPSK调制模块:将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。

QPSK解调模块:将接收到的符号序列解调为二进制数据流。

下面将详细介绍每个模块的原理和实现方法。

2.1QPSK调制模块
QPSK调制模块将二进制数据流转换为符号序列,并将每个符号映射到特定的相位状态。QPSK调制使用四个相位状态,分别为0度、90度、180度和270度。在QPSK调制中,每个符号代表两个比特,因此,输入二进制数据流的速率必须是符号速率的两倍。

   QPSK调制模块通常使用带有正弦和余弦输出的正交调制器(I/Q调制器)来实现。在I/Q调制器中,输入信号被分成两路,一路被称为“正交(I)路”,另一路被称为“正交(Q)路”。每个输入符号被映射到一个特定的正交信号,然后通过合成器将两个信号相加,形成QPSK调制信号。

209e7268087fca46471b01484c9fcb54_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 QPSK解调模块
QPSK解调模块将接收到的符号序列解调为二进制数据流。解调模块使用相干解调器来实现,相干解调器可以将接收到的信号分解成两个正交分量,然后将它们与本地正交信号相乘,得到原始的QPSK符号。解调器的输出是一个复数,需要进行幅值解调和相位解调才能得到原始的二进制数据流。

cd7b695decaffc4c60f1e3529424912d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于FPGA的QPSK调制解调系统的开发过程。

   首先需要选择适合的FPGA平台和开发工具。常用的FPGA平台有Xilinx和Altera,开发工具包括Vivado,以及Altera Quartus。选择FPGA平台和开发工具需要考虑系统的要求和开发人员的经验。

   系统设计包括确定系统的功能、模块划分和接口设计。在QPSK调制解调系统中,需要确定每个模块的功能和接口,并确定数据流的方向和速率。在设计过程中,需要考虑系统的性能、资源占用和延迟等因素。

   模块实现是基于FPGA的QPSK调制解调系统开发的核心部分。在模块实现过程中,需要使用硬件描述语言(HDL)编写代码,并使用仿真工具进行验证。常用的HDL语言有VHDL和Verilog,仿真工具包括ModelSim和ISE Simulator。

   基于FPGA的QPSK调制解调系统是一种高效、可靠的数字通信系统。通过使用FPGA平台和硬件描述语言,可以实现高性能、低延迟、低功耗的QPSK调制解调系统。在开发过程中,需要考虑系统的功能、性能、资源占用和延迟等因素。通过系统测试,可以确保系统的正确性和可靠性。

3.Verilog核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/11/04 19:54:30
// Design Name:
// Module Name: tops_hdw
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module tops_hdw(

input i_clk,
input i_rst,
output reg [3:0] led
);

wire o_msgI;
wire o_msgQ;
//产生模拟测试数据
signal signal_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.o_bitsI(o_msgI),
.o_bitsQ(o_msgQ)
);

//设置SNR
wire signed[7:0]o_SNR;
vio_0 your_instance_name (
.clk(i_clk), // input wire clk
.probe_out0(o_SNR) // output wire [7 : 0] probe_out0
);

wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;
wire signed[31:0]o_mod_T;
wire signed[15:0]o_Nmod_T;
wire signed[31:0]o_modc_R;
wire signed[31:0]o_mods_R;
wire signed[31:0]o_Ifir_R;
wire signed[31:0]o_Qfir_R;
wire signed[31:0]o_error_num;
wire signed[31:0]o_total_num;
wire [1:0]o_Irec;
wire [1:0]o_Qrec;
wire errflag;
QPSK_tops QPSK_tops_u(
.i_clk (i_clk),
.i_rst (~i_rst),
.i_Ibits(o_msgI),
.i_Qbits(o_msgQ),
.i_SNR (o_SNR),
.o_Ifir (o_Ifir_T),
.o_Qfir (o_Qfir_T),
.o_mod_T(o_mod_T),
.o_Nmod_T(o_Nmod_T),
.o_modc (o_modc_R),
.o_mods (o_mods_R),
.o_rIfir (o_Ifir_R),
.o_rQfir (o_Qfir_R),
.o_error_num (o_error_num),
.o_total_num (o_total_num),
.o_Irec(o_Irec),
.o_Qrec(o_Qrec),
.o_flag(errflag)
);

//ila篇内测试分析模块
ila_0 ila_u (
.clk(i_clk), // input wire clk
.probe0({
o_msgI,o_msgQ,o_SNR,o_Ifir_T[15:6],o_Qfir_T[15:6],//30
o_Nmod_T,o_modc_R[27:12],o_mods_R[27:12],o_Ifir_R[27:12],o_Qfir_R[27:12],//75
o_error_num,o_total_num,errflag,//65
o_Irec,o_Qrec//4
})
);

endmodule
```

4.开发板使用说明和如何移植不同的开发板
注意:硬件片内测试是指发射接收均在一个板子内完成,因此不需要定时同步模块。

在本课题中,使用的开发板是:

f7e38987c9f20cf993651dfea9382e77_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

如果你的开发板和我的不一样,可以参考代码包中的程序移植方法进行移植:

1629b967e2e6f22ca969824d23d73df8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的16psk调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16PSK调制解调系统的硬件测试版本。系统在原有仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比下的性能测试。16PSK通过改变载波相位传输4比特信息,广泛应用于高速数据传输。硬件测试操作详见配套视频。开发板使用及移植方法也一并提供。
38 6
|
1月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。
46 7
|
1月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
8天前
|
JSON 前端开发 测试技术
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
61 10
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
|
6天前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
31 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
|
1月前
|
存储 测试技术 数据库
接口测试工具攻略:轻松掌握测试技巧
在互联网快速发展的今天,软件系统的复杂性不断增加,接口测试工具成为确保系统稳定性的关键。它如同“翻译官”,模拟请求、解析响应、验证结果、测试性能并支持自动化测试,确保不同系统间信息传递的准确性和完整性。通过Apifox等工具,设计和执行测试用例更加便捷高效。接口测试是保障系统稳定运行的第一道防线。
|
1月前
|
Web App开发 JSON 测试技术
API测试工具集合:让接口测试更简单高效
在当今软件开发领域,接口测试工具如Postman、Apifox、Swagger等成为确保API正确性、性能和可靠性的关键。Postman全球闻名但高级功能需付费,Apifox则集成了API文档、调试、Mock与自动化测试,简化工作流并提高团队协作效率,特别适合国内用户。Swagger自动生成文档,YApi开源但功能逐渐落后,Insomnia界面简洁却缺乏团队协作支持,Paw仅限Mac系统。综合来看,Apifox是国内用户的理想选择,提供中文界面和免费高效的功能。
|
2月前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
135 11
|
3月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
93 3

热门文章

最新文章