☆打卡算法☆LeetCode 207. 课程表 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: ☆打卡算法☆LeetCode 207. 课程表 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个学期应该学习的课程数,判断是否可能完成所有课程的学习。”

2、题目描述

你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。

在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程  bi 。

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。

示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。

二、解题

1、思路分析

这道题需要先理解题意,题意要求判断是否可能完成所有课程的学习。

比如这个学期必须选修numCourses门课程,在选修某些课程之前需要先完成一些先修课程,先修课程存放在数组prerequisites中,是一个二维数组,表明某些课程前需要学习的先修课程。

也就是这些课程之前有一个先后顺序,也就是依赖关系,也就是做事情的先后顺序,比如说:

1702382585841.jpg

这个图叫做有向无环图,把一个有向无环图转成线性的排序就叫做拓扑排序。

对于给定的条件可以转成有向图G,给它的及诶单排列,如果满足:

  • 图G中的任意一条有向边(u,v),u在排列中都出现在v的前面,就称图G为有向无环图。

那么对于一个有向图,可以分为两种情况:

  • 不是有向无环图,也就是不满足任意一条有向边(u,v),u在排列中都出现在v的前面,那么就不存在满足要求的排列。
  • 是有向无环图,但是它的拓扑排序可能不止一种。

求有向图G是否存在拓扑排序,可以判断是否有一种符合要求的课程学习顺序,可以使用深度优先搜索的流程,用一个栈来存储所有已经搜索完成的节点。

比如说搜索到节点u,如果它的所有相邻接点都已经搜索完成,也就是都在栈中,那么就可以将u入栈。

因为栈先入先出,那么u就在栈顶的位置,u就出现在所有u的相邻节点前,因此对于u是满足拓扑排序的要求的。

那么对整个图进行一次深度优先搜索,对每个节点回溯的时候,将该节点放入栈中,最后从栈顶到栈底的序列就是一种拓扑排序。

2、代码实现

代码参考:

class Solution {
    List<List<Integer>> edges;
    int[] visited;
    boolean valid = true;
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        edges = new ArrayList<List<Integer>>();
        for (int i = 0; i < numCourses; ++i) {
            edges.add(new ArrayList<Integer>());
        }
        visited = new int[numCourses];
        for (int[] info : prerequisites) {
            edges.get(info[1]).add(info[0]);
        }
        for (int i = 0; i < numCourses && valid; ++i) {
            if (visited[i] == 0) {
                dfs(i);
            }
        }
        return valid;
    }
    public void dfs(int u) {
        visited[u] = 1;
        for (int v: edges.get(u)) {
            if (visited[v] == 0) {
                dfs(v);
                if (!valid) {
                    return;
                }
            } else if (visited[v] == 1) {
                valid = false;
                return;
            }
        }
        visited[u] = 2;
    }
}

1702382602684.jpg


3、时间复杂度

时间复杂度:O(n+m)

其中n为课程数,m为先修课程的要求数,时间复杂度主要是对图进行深度优先搜索的时间复杂度。

空间复杂度:O(n+m)

其中n为课程数,m为先修课程的要求数,在深度优先搜索的过程中,需要最多O(n)的栈空间进行深度优先搜索,因此总时间复杂度为O(n+m)。

三、总结

由于只需要判断是否存在一种拓扑排序。

而栈仅仅是为了存放最终的拓扑排序结果。

那么可以只记录每个节点的状态,省去对应的栈空间开销。

相关文章
|
2月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
47 3
|
2月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
21天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
25天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
66 4
|
26天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
2月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
28 2
|
2月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。

推荐镜像

更多