代码随想录算法训练营第四十八天 | LeetCode 121. 买卖股票的最佳时机、122. 买卖股票的最佳时机 II

简介: 代码随想录算法训练营第四十八天 | LeetCode 121. 买卖股票的最佳时机、122. 买卖股票的最佳时机 II

代码随想录算法训练营第四十八天 | LeetCode 121. 买卖股票的最佳时机、122. 买卖股票的最佳时机 II

文章链接:买卖股票的最佳时机买卖股票的最佳时机 II

视频链接:买卖股票的最佳时机买卖股票的最佳时机 II

1. LeetCode 121. 买卖股票的最佳时机

1.1 思路

  1. 在本题中我们要通过买卖一次股票而赚的最多。股票买卖问题是动态规划解决的比较经典的一系列,可能这题也能用贪心或者别的思路解决,但这些只能解决具体场景的题目,动态规划是解决一系列的题目。
  2. dp 数组及其下标的含义:第 i 天有两个状态买与不买这只股票,因此需要定义二维数组 dp[i][0]:表示持有这只股票,所得的最大现金;dp[i][1]:表示不持有这只股票,所得的最大现金。最终求的结果就是 dp[length-1][0] 和 dp[length-1][1] 两个状态中取最大值。注意:我们是第 i 天持有股票,很可能第 i 天之前就买了,第 i 天不持有也不代表第 i 天卖出,很可能第 i 天之前就卖出了。
  3. 递推公式:dp[i][0] 中:我们中 dp[i-1][0] 时是不是就可以已经持有这只股票的最大现金,也就是一直延续着这种状态,现金就没有改变了,此时 dp[i][0]=dp[i-1][0];还有一种情况就是第 i 天买入这只股票了,此时就变成了持有这只股票的状态了,就需要把这个对应的钱花出去,因此现金要减去 price[i],而本题股票只买入一次,因此直接就是 dp[i][0]=0-prices[i],因此 dp[i][0]=两者最大值,因为我们要求最大现金。
  4. dp[i][1] 中:同理也可以保持前一天的状态,即第 i-1 天也不持有这只股票,dp[i][1]=dp[i-1][1];还有一种情况就是在第 i 天卖出这只股票了,此时就变成了不持有这只股票的状态了,那第 i-1 天就一定是持有这只股票的状态了即 dp[i-1][0],再加上第 i 天卖出股票的价格 prices[i],因此 dp[i][1]=两者最大值
  5. dp 数组的初始化:从递推公式可以看出,dp[i] 都是由 dp[i-1] 推出的,都是依靠前一个状态的,因此,dp[0][0] 和 dp[0][1] 这两个状态是最基础的状态,第一个是第 0 天持有这只股票的最大现金,那就是负的了,即-prices[0],第二个是第 0 天不持有这只股票的最大现金,那也还是 0
  6. 遍历顺序:根据滴推公式则是从前往后遍历 for(int i=1;i<length;i++)为什么从 1 开始,因为 0 已经初始化了
  7. 打印 dp 数组:用于 debug

1.2 代码

// 解法1
class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length == 0) return 0;
        int length = prices.length;
        // dp[i][0]代表第i天持有股票的最大收益
        // dp[i][1]代表第i天不持有股票的最大收益
        int[][] dp = new int[length][2];
        int result = 0;
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
            dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
        }
        return dp[length - 1][1];
    }
}

2. LeetCode 122. 买卖股票的最佳时机 II

2.1 思路

  1. 121. 买卖股票的最佳时机区别在于股票可以买卖多次了,问最大利润是多少。可以使用贪心思路,甚至更简单了,但用动态规划更加有继承性。
  2. 递推公式:先看不持有这只股票的状态 dp[i][1]:可以由 dp[i-1][1] 或者 dp[i-1][0]+prices[i] 推导而来,这个和121. 买卖股票的最佳时机是一样的。再看持有这只股票的状态 dp[i][0]:可以由第 i-1 天持有股票的状态延续下来即 dp[i-1][0],也可以第 i 天买入股票,而买入股票这种状态中121. 买卖股票的最佳时机中是全程只能买卖一次股票,因此是 0-prices[i],而本题是可以多次买卖的,手头上的现金就不是 0 了,就应该是第 i-1 天不持有股票的最大现金了即 dp[i-1][1],再减去 prices[i],即 dp[i][0]=两者最大值,这就是本题和121. 买卖股票的最佳时机的唯一区别,其他的同上一题

2.2 代码

// 动态规划
class Solution 
    // 实现1:二维数组存储
    // 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储
    // 时间复杂度:O(n),空间复杂度:O(n)
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n][2];     // 创建二维数组存储状态
        dp[0][0] = 0;                   // 初始状态
        dp[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);    // 第 i 天,没有股票
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);    // 第 i 天,持有股票
        }
        return dp[n - 1][0];    // 卖出股票收益高于持有股票收益,因此取[0]
    }
}
相关文章
|
11天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
22天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
|
21天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1月前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
27天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
18 0
|
1月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
22 0
|
29天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
6天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
14天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
下一篇
无影云桌面