高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法适用于哪些场景

简介: 高并发架构设计三大利器:缓存、限流和降级问题之滑动窗口算法适用于哪些场景

问题一:滑动窗口算法适用于哪些场景?

滑动窗口算法适用于哪些场景?


参考回答:

适用于与固定窗口算法相同的场景,特别是那些对流量限制要求较高的场景,需要更好地应对突发流量。通过使用滑动窗口算法,可以更精确地控制单位时间内的请求量,避免固定窗口算法中的临界突变问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625533


问题二:滑动窗口算法相比固定窗口算法有哪些优势?

滑动窗口算法相比固定窗口算法有哪些优势?


参考回答:

滑动窗口算法相比固定窗口算法的优势在于其更高的精确性和可扩展性。通过调整时间窗口的大小,滑动窗口算法可以实现不同的限流效果,更好地应对不同业务场景的需求。此外,滑动窗口算法还可以非常容易地与其他限流算法结合使用,提供更灵活的限流策略。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625534


问题三:滑动窗口算法存在哪些劣势?

滑动窗口算法存在哪些劣势?


参考回答:

滑动窗口算法的劣势在于其无法很好地处理劣质突发流量。当短时间内出现大量请求时,一旦达到限流阈值,所有超过阈值的请求都会被直接拒绝,这可能导致一部分合理的请求也被损失。因此,在使用滑动窗口算法时,需要合理调整时间窗口的大小,以平衡限流效果和用户体验。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625535


问题四:什么是漏桶算法,其主要特点是什么?

什么是漏桶算法,其主要特点是什么?


参考回答:

漏桶算法是一种基于出口流速的流量控制算法,常用于网络通信中的流量整形。其主要特点包括:可以以任意速率流入水滴到漏桶(流入请求),漏桶具有固定容量,出水速率是固定常量(流出请求),如果流入水滴超出了桶的容量,则流入的水滴溢出(新请求被拒绝)。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625536


问题五:漏桶算法的工作原理是什么?

漏桶算法的工作原理是什么?


参考回答:

将数据包看作是水滴,漏桶看作是一个固定容量的水桶。数据包像水滴一样从桶的顶部流入桶中,并通过桶底的一个小孔以一定的速度流出,从而限制了数据包的流量。当新请求到达时,它们被加入到漏桶中,如果漏桶已满,则新请求被拒绝;否则,以固定的速率从漏桶中处理请求。https://ucc.alicdn.com/pic/developer-ecology/6ibaby6qg4ku4_2bf7a71ee5314de7a1499243b8da3acc.png


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/625537

相关文章
|
2月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
543 5
|
5月前
|
关系型数据库 MySQL 分布式数据库
Super MySQL|揭秘PolarDB全异步执行架构,高并发场景性能利器
阿里云瑶池旗下的云原生数据库PolarDB MySQL版设计了基于协程的全异步执行架构,实现鉴权、事务提交、锁等待等核心逻辑的异步化执行,这是业界首个真正意义上实现全异步执行架构的MySQL数据库产品,显著提升了PolarDB MySQL的高并发处理能力,其中通用写入性能提升超过70%,长尾延迟降低60%以上。
|
7月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
2689 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
5月前
|
消息中间件 存储 大数据
阿里云消息队列 Kafka 架构及典型应用场景
阿里云消息队列 Kafka 是一款基于 Apache Kafka 的分布式消息中间件,支持消息发布与订阅模型,满足微服务解耦、大数据处理及实时流数据分析需求。其通过存算分离架构优化成本与性能,提供基础版、标准版和专业版三种 Serverless 版本,分别适用于不同业务场景,最高 SLA 达 99.99%。阿里云 Kafka 还具备弹性扩容、多可用区部署、冷热数据缓存隔离等特性,并支持与 Flink、MaxCompute 等生态工具无缝集成,广泛应用于用户行为分析、数据入库等场景,显著提升数据处理效率与实时性。
|
11月前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
10月前
|
人工智能 运维 监控
云卓越架构:企业稳定性架构体系和AI业务场景探秘
本次分享由阿里云智能集团公共云技术服务部上海零售技术服务高级经理路志华主讲,主题为“云卓越架构:企业稳定性架构体系和AI业务场景探秘”。内容涵盖四个部分:1) 稳定性架构设计,强调高可用、可扩展性、安全性和可维护性;2) 稳定性保障体系和应急体系的建立,确保快速响应和恢复;3) 重大活动时的稳定重宝策略,如大促或新业务上线;4) AI在企业中的应用场景,包括智能编码、知识库问答、创意广告生成等。通过这些内容,帮助企业在云计算环境中构建更加稳定和高效的架构,并探索AI技术带来的创新机会。
|
11月前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
480 12
|
12月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
431 8
|
11月前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
340 3

热门文章

最新文章