【100天精通python】Day28:文件与IO操作_JSON文件处理

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 【100天精通python】Day28:文件与IO操作_JSON文件处理

专栏导读

专栏订阅地址:https://blog.csdn.net/qq_35831906/category_12375510.html

1. JSON数据格式简介

       JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛用于数据的存储和交流。它易于人类阅读和编写,同时也易于机器解析和生成。JSON的主要特点包括:

       基本结构:JSON由键值对构成,键和值之间使用冒号分隔,不同的键值对之间使用逗号分隔。JSON的数据结构可以嵌套,从而构建出复杂的数据结构。

       数据类型:JSON支持多种数据类型,包括:

  • 对象(Object):由花括号 {} 包裹,包含键值对,键是字符串,值可以是字符串、数字、布尔值、对象、数组等。
  • 数组(Array):由方括号 [] 包裹,包含多个值,值可以是字符串、数字、布尔值、对象、数组等。
  • 字符串(String):使用双引号 " 包裹,可以包含任何Unicode字符。
  • 数字(Number):可以是整数或浮点数。
  • 布尔值(Boolean):表示真或假。
  • 空值(Null):表示空值或缺失数据。

1.1 示例JSON数据

{
  "name": "John",
  "age": 30,
  "is_student": false,
  "hobbies": ["reading", "swimming"],
  "address": {
    "street": "123 Main St",
    "city": "Cityville"
  }
}

1.2 JSON文件的特点

  1. 易于阅读:JSON的结构清晰,容易阅读和理解,适用于人类和机器之间的交互。
  2. 跨平台性:JSON是一种与编程语言和平台无关的格式,因此适用于不同语言和操作系统之间的数据交换。
  3. 用途广泛:JSON在网络传输、配置文件、API交互、日志记录等领域都有广泛的应用。

JSON的简洁性和可读性使其成为当今应用程序和系统之间数据交换的首选格式之一。无论是在前端和后端的开发中,还是在数据处理和存储中,都可以使用JSON来方便地表示和传递数据。

2 json模块的常用操作

 json模块提供了两个主要函数:json.dumps()用于将Python对象转换为JSON格式的字符串,json.loads()用于将JSON格式的字符串解析为Python对象。此外,还有用于读写JSON文件的函数:json.dump()用于将Python对象写入JSON文件,json.load()用于从JSON文件读取数据并将其转换为Python对象。

2.1 读写JSON文件的示例

       下面是一个简单的示例,演示如何使用json模块读写JSON文件:

import json
# 要写入JSON文件的数据
data = {
    "name": "Alice",
    "age": 25,
    "is_student": True,
    "hobbies": ["painting", "gardening"],
    "address": {
        "street": "456 Elm St",
        "city": "Townsville"
    }
}
# 将数据写入JSON文件
with open("data.json", "w") as json_file:
    json.dump(data, json_file, indent=4)  # indent用于美化输出
# 从JSON文件读取数据
with open("data.json", "r") as json_file:
    loaded_data = json.load(json_file)
# 打印读取的数据
print(loaded_data)

       在这个示例中,我们首先将一个Python字典写入名为"data.json"的JSON文件中,然后再从该文件中读取数据并将其加载为Python对象。加载的数据与原始数据相同,以字典的形式存储在loaded_data变量中。

2.2 解析JSON字符串

使用json.loads()函数可以将JSON格式的字符串解析为Python字典或列表。

import json
json_string = '{"name": "Bob", "age": 30}'
data = json.loads(json_string)

2.3 修改JSON数据

读取JSON数据后,你可以对其进行修改,然后再写回JSON文件。

import json
with open("data.json", "r") as json_file:
    data = json.load(json_file)
# 修改数据
data["age"] = 28
with open("data.json", "w") as json_file:
    json.dump(data, json_file, indent=4)

2.4 查询和操作嵌套数据

当JSON数据有嵌套结构时,你可以使用字典或列表的方式查询和操作内部数据。

import json
with open("data.json", "r") as json_file:
    data = json.load(json_file)
# 查询嵌套数据
city = data["address"]["city"]
hobbies = data["hobbies"]
# 修改嵌套数据
data["address"]["city"] = "New City"
data["hobbies"].append("cooking")

2.5 处理包含特殊字符的JSON文件

有时,JSON文件中可能包含特殊字符(如Unicode转义字符)或不可打印字符。在读取和处理这些文件时,你可能需要进行解码和处理。

import json
with open("special_chars.json", "r", encoding="utf-8") as json_file:
    raw_data = json_file.read()
    cleaned_data = raw_data.encode("utf-8").decode("unicode_escape")
parsed_data = json.loads(cleaned_data)
print(parsed_data)

2.6 处理日期和时间

import json
from datetime import datetime
data_with_dates = {
    "event": "birthday",
    "date": "2023-08-07T15:30:00Z"
}
date_string = data_with_dates["date"]
parsed_date = datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%SZ")
print(parsed_date)

2.7 处理大型JSON文件

对于大型JSON文件,可能需要逐行读取和处理,以减少内存占用。

import json
with open("large_data.json", "r") as json_file:
    for line in json_file:
        data = json.loads(line)
        # 处理每一行的数据

2.8 格式化输出

使用json.dump()时,可以设置indent参数来美化输出,使其更易读。

import json
data = {
    "name": "Alice",
    "age": 25,
    "hobbies": ["painting", "gardening"]
}
with open("output.json", "w") as json_file:
    json.dump(data, json_file, indent=4)

2.9 处理嵌套结构和深层次的JSON

       当JSON数据具有深层次的嵌套结构时,访问和处理特定数据可能变得复杂。你可以使用递归方法来处理深层次的嵌套结构。

def get_value(data, target_key):
    if isinstance(data, dict):
        for key, value in data.items():
            if key == target_key:
                return value
            if isinstance(value, (dict, list)):
                result = get_value(value, target_key)
                if result is not None:
                    return result
    elif isinstance(data, list):
        for item in data:
            result = get_value(item, target_key)
            if result is not None:
                return result
    return None
# 示例JSON数据
nested_data = {
    "person": {
        "name": "Alice",
        "address": {
            "street": "123 Elm St",
            "city": "Townsville"
        }
    }
}
target_value = get_value(nested_data, "city")
print(target_value)  # 输出:Townsville

2.10 JSON文件读取失败如何处理

无法成功读取JSON文件内容,导致json.load()函数报错。

确保文件路径正确,文件存在且可读。检查文件编码是否正确,通常使用utf-8编码。

import json
try:
    with open("data.json", "r", encoding="utf-8") as json_file:
        data = json.load(json_file)
except FileNotFoundError:
    print("JSON file not found.")
except json.JSONDecodeError:
    print("Error decoding JSON data.")

3 json 文件格式转换

3.1 JSON转换为CSV

       CSV(Comma-Separated Values)是一种以逗号分隔字段的文本文件格式。你可以使用Python的csv模块将JSON数据转换为CSV格式。

import json
import csv
with open("data.json", "r") as json_file:
    data = json.load(json_file)
with open("data.csv", "w", newline="") as csv_file:
    csv_writer = csv.writer(csv_file)
    # 写入表头
    csv_writer.writerow(data[0].keys())
    # 写入数据
    for item in data:
        csv_writer.writerow(item.values())

3.2 JSON转换为XML

       XML(eXtensible Markup Language)是一种标记语言,用于表示结构化数据。你可以使用Python的第三方库(如xmltodict)将JSON数据转换为XML格式。

import json
import xmltodict
with open("data.json", "r") as json_file:
    data = json.load(json_file)
xml_data = xmltodict.unparse({"root": data})
with open("data.xml", "w") as xml_file:
    xml_file.write(xml_data)

3. 3 JSON转换为YAML

       YAML(YAML Ain't Markup Language)是一种可读性高的数据序列化格式。你可以使用Python的pyyaml库将JSON数据转换为YAML格式。

import json
import yaml
with open("data.json", "r") as json_file:
    data = json.load(json_file)
with open("data.yaml", "w") as yaml_file:
    yaml.dump(data, yaml_file, default_flow_style=False)

3.4 CSV/XML/YAML转换为JSON

       同样地,你可以将CSV、XML和YAML文件转换为JSON格式,具体方法取决于所用的库。例如,使用csvxmltodictpyyaml等库可以进行相应的转换。

4 CSV/XML/YAML转换为JSON

4.1 CSV转换为JSON

import csv
import json
csv_file_path = "data.csv"
json_file_path = "data_from_csv.json"
data = []
with open(csv_file_path, "r") as csv_file:
    csv_reader = csv.DictReader(csv_file)
    for row in csv_reader:
        data.append(row)
with open(json_file_path, "w") as json_file:
    json.dump(data, json_file, indent=4)

4.2 XML转换为JSON

假设你有一个XML文件 data.xml

<root>
    <item>
        <name>John</name>
        <age>30</age>
    </item>
    <item>
        <name>Alice</name>
        <age>25</age>
    </item>
</root>

下面是将XML转换为JSON的示例代码:

import xmltodict
import json
xml_file_path = "data.xml"
json_file_path = "data_from_xml.json"
with open(xml_file_path, "r") as xml_file:
    xml_data = xml_file.read()
    json_data = json.dumps(xmltodict.parse(xml_data), indent=4)
with open(json_file_path, "w") as json_file:
    json_file.write(json_data)

4.3 YAML转换为JSON

假设你有一个YAML文件 data.yaml

- name: John
  age: 30
- name: Alice
  age: 25

下面是将YAML转换为JSON的示例代码:

import yaml
import json
yaml_file_path = "data.yaml"
json_file_path = "data_from_yaml.json"
with open(yaml_file_path, "r") as yaml_file:
    yaml_data = yaml.safe_load(yaml_file)
    json_data = json.dumps(yaml_data, indent=4)
with open(json_file_path, "w") as json_file:
    json_file.write(json_data)
目录
打赏
0
0
0
0
20
分享
相关文章
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
怎么取消对project.private.config.json这个文件的git记录
通过以上步骤,您可以成功取消对 `project.private.config.json`文件的Git记录。这样,文件将不会被包含在未来的提交中,同时仍保留在您的工作区中。
57 28
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
50 20
如何在Python中高效地读写大型文件?
大家好,我是V哥。上一篇介绍了Python文件读写操作,今天聊聊如何高效处理大型文件。主要方法包括:逐行读取、分块读取、内存映射(mmap)、pandas分块处理CSV、numpy处理二进制文件、itertools迭代处理及linecache逐行读取。这些方法能有效节省内存,提升效率。关注威哥爱编程,学习更多Python技巧。
如何使用 Python 进行文件读写操作?
大家好,我是V哥。本文介绍Python中文件读写操作的方法,包括文件读取、写入、追加、二进制模式、JSON、CSV和Pandas模块的使用,以及对象序列化与反序列化。通过这些方法,你可以根据不同的文件类型和需求,灵活选择合适的方式进行操作。希望对正在学习Python的小伙伴们有所帮助。欢迎关注威哥爱编程,全栈路上我们并肩前行。
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
如何使用Python将TS文件转换为MP4
本文介绍了如何使用Python和FFmpeg将TS文件转换为MP4文件。首先需要安装Python和FFmpeg,然后通过`subprocess`模块调用FFmpeg命令,实现文件格式的转换。代码示例展示了具体的操作步骤,包括检查文件存在性、构建FFmpeg命令和执行转换过程。
73 7
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
3月前
|
Python中__init__.py文件的作用
`__init__.py`文件在Python包管理中扮演着重要角色,通过标识目录为包、初始化包、控制导入行为、支持递归包结构以及定义包的命名空间,`__init__.py`文件为组织和管理Python代码提供了强大支持。理解并正确使用 `__init__.py`文件,可以帮助开发者更好地组织代码,提高代码的可维护性和可读性。
172 2
【Azure Function】FTP上传了Python Function文件后,无法在门户页面加载函数的问题
通过FTP上传Python Function至Azure云后,出现函数列表无法加载的问题。经排查,发现是由于`requirements.txt`中的依赖包未被正确安装。解决方法为:在本地安装依赖包到`.python_packages/lib/site-packages`目录,再将该目录内容上传至云上的`wwwroot`目录,并重启应用。最终成功加载函数列表。

热门文章

最新文章