PSO-XGBOOST回归预测 | Matlab 粒子群优化xgboost(PSO-XGBOOST) 回归预测

简介: PSO-XGBOOST回归预测 | Matlab 粒子群优化xgboost(PSO-XGBOOST) 回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习领域,数据回归预测是一项重要的任务,它可以帮助我们根据已有的数据来预测未来的结果。而XGBoost是一种强大的机器学习算法,它在回归预测任务中表现出色。本文将介绍如何使用粒子群算法(Particle Swarm Optimization,PSO)来优化XGBoost模型,以实现更准确的数据回归预测。

XGBoost是一种基于梯度提升树(Gradient Boosting Tree)的算法,它通过迭代地训练多个弱分类器来构建一个强分类器。XGBoost在许多机器学习竞赛中取得了优异的成绩,其强大的性能使其成为数据科学家和机器学习工程师的首选算法之一。

然而,XGBoost的性能并不仅仅取决于算法本身,还与参数的选择和调整有关。在实际应用中,XGBoost的参数调整是一个非常重要的步骤,它可以显著影响模型的性能。为了找到最优的参数组合,我们可以使用粒子群算法进行参数优化。

粒子群算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为。在粒子群算法中,每个粒子代表一个候选解,它根据自身的经验和群体中最优解的经验来更新自己的位置和速度。通过不断迭代,粒子群算法可以逐渐找到最优解。

在使用粒子群算法优化XGBoost模型时,我们首先需要确定待优化的参数范围。常见的XGBoost参数包括学习率(learning rate)、树的数量(n_estimators)、树的深度(max_depth)等。我们可以将这些参数的取值范围设定为粒子群算法的搜索空间。

接下来,我们需要定义适应度函数来评估每个粒子的性能。在回归预测任务中,常用的适应度函数可以是均方误差(Mean Squared Error)或平均绝对误差(Mean Absolute Error)。通过计算模型在训练集上的误差,我们可以评估每个粒子的性能。

然后,我们使用粒子群算法来搜索最优解。在每次迭代中,粒子根据自身的速度和位置更新参数的取值,并计算适应度函数的值。通过不断迭代更新,粒子群算法可以逐渐收敛到最优解。

最后,我们使用优化后的参数来训练XGBoost模型,并进行数据回归预测。通过使用粒子群算法优化XGBoost模型,我们可以得到更准确的预测结果,并提高模型的性能。

总结起来,本文介绍了如何使用粒子群算法优化XGBoost模型,以实现更准确的数据回归预测。粒子群算法可以帮助我们找到最优的参数组合,从而提高XGBoost模型的性能。希望本文对读者在机器学习和数据回归预测方面有所帮助。

📣 部分代码

function Yhat = xgboost_test(p_test, model)%%  读取模型h_booster_ptr = model.h_booster_ptr;%%  得到输入数据相关属性rows = uint64(size(p_test, 1));cols = uint64(size(p_test, 2));p_test = p_test'; %%  设置必要的指针h_test_ptr = libpointer;h_test_ptr_ptr = libpointer('voidPtrPtr', h_test_ptr);test_ptr = libpointer('singlePtr', single(p_test));calllib('xgboost', 'XGDMatrixCreateFromMat', test_ptr, rows, cols, model.missing, h_test_ptr_ptr);%%  预测out_len_ptr = libpointer('uint64Ptr', uint64(0));f = libpointer('singlePtr');f_ptr = libpointer('singlePtrPtr', f);calllib('xgboost', 'XGBoosterPredict', h_booster_ptr, h_test_ptr, int32(0), uint32(0), int32(0), out_len_ptr, f_ptr);%%  提取预测n_outputs = out_len_ptr.Value;setdatatype(f, 'singlePtr', n_outputs);%%  得到最终输出Yhat = double(f.Value);end

⛳️ 运行结果

🔗 参考文献

[1] 王计斌,魏东迎,孟维.基于XGBoost回归算法的基站覆盖范围的预测方法.CN202211074783.9[2023-10-01].

[2] 胡菥.基于xgboost回归算法的滴滴出行供求缺口预测[D].西南财经大学,2017.

[3] 李军刘霞陈梓锋冯星龙王永胜.基于Logistic回归和XGBoost算法构建急性膝关节周围多发损伤患者围手术期深静脉血栓形成风险的预测模型[J].国际外科学杂志, 2021, 048(006):371-377,封3.

[4] 王坤章,蒋书波,张豪,等.基于XGBoost的回归-分类-回归寿命预测模型[J].[2023-10-01].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合







相关文章
|
16天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
12天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
24天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
算法 调度 云计算
云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化
本程序针对云计算任务调度优化问题,旨在减少任务消耗时间、提升经济效益并降低设备功耗。通过对比蚁群优化算法(ACO)与蛙跳优化算法(SFLA),分别模拟蚂蚁信息素路径选择及青蛙跳跃行为,在MATLAB2022A环境下运行测试。核心代码实现任务分配方案的动态调整与目标函数优化,结合任务集合T与服务器集合S,综合考量处理时间与能耗等约束条件,最终输出优化结果。两种算法各具优势,为云计算任务调度提供有效解决方案。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
322 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
8月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
199 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
8月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
259 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章