NGO-BP回归预测 | Matlab 北方苍鹰优化算法优化BP神经网络回归预测

简介: NGO-BP回归预测 | Matlab 北方苍鹰优化算法优化BP神经网络回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着全球对可再生能源的需求不断增加,风力发电作为一种清洁、可持续的能源形式,受到了广泛关注。然而,由于风力发电的不稳定性和难以预测性,如何准确预测风电功率成为了一个重要的研究领域。

在过去的几十年里,神经网络被广泛应用于风电功率预测中。其中,BP神经网络是最常用的一种方法。BP神经网络通过学习历史数据中的模式和趋势,来预测未来的风电功率。然而,传统的BP神经网络存在训练速度慢、易陷入局部最优解等问题。

为了提高BP神经网络的预测精度和训练速度,研究者们提出了各种算法来优化BP神经网络。其中,北方苍鹰算法(Northern Gannet Optimization, NGO)是一种基于自然界鸟类觅食行为的优化算法,近年来在解决优化问题上取得了显著的成果。

本研究旨在基于北方苍鹰算法优化BP神经网络,实现风电功率的准确预测。首先,我们收集了大量的风电功率数据,并对数据进行预处理和特征提取。然后,我们设计了一个基于BP神经网络的风电功率预测模型,并将北方苍鹰算法应用于该模型的训练过程中。

与传统的BP神经网络相比,优化后的BP神经网络在风电功率预测中表现出更高的准确性和稳定性。北方苍鹰算法能够有效地优化BP神经网络的权重和阈值,提高网络的收敛速度和泛化能力。通过与其他优化算法进行比较实验,我们发现北方苍鹰算法在风电功率预测中具有明显的优势。

此外,我们还对优化后的BP神经网络进行了灵敏度分析和误差分析,以评估模型的稳定性和可靠性。结果表明,优化后的模型对于不同的风速和风向变化具有较好的适应性和预测能力。

综上所述,基于北方苍鹰算法优化的BP神经网络在风电功率预测中具有明显的优势。该研究为风力发电行业提供了一种有效的预测方法,有助于提高风电发电的可靠性和经济性。未来的研究可以进一步探索不同优化算法在风电功率预测中的应用,并进一步改进和优化模型,以满足不断增长的可再生能源需求。

📣 部分代码

function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)%该函数用来计算适应度值%x          input     个体%inputnum   input     输入层节点数%outputnum  input     隐含层节点数%net        input     网络%inputn     input     训练输入数据%outputn    input     训练输出数据%error      output    个体适应度值%提取w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net=newff(inputn,outputn,hiddennum);%网络进化参数net.trainParam.epochs=20;net.trainParam.lr=0.01;net.trainParam.goal=0.00001;net.trainParam.show=100;net.trainParam.showWindow=0; %网络权值赋值net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%网络训练net=train(net,inputn,outputn);an=sim(net,inputn);error=sum(abs(an-outputn));

⛳️ 运行结果

🔗 参考文献

[1] 王德民.基于遗传算法优化BP神经网络的风电功率预测[J].电子设计工程, 2013, 21(22):4.DOI:10.3969/j.issn.1674-6236.2013.22.028.

[2] 王德民.基于遗传算法优化BP神经网络的风电功率预测[J].电子设计工程, 2013.DOI:CNKI:SUN:GWDZ.0.2013-22-030.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
10天前
|
数据采集 网络协议 算法
移动端弱网优化专题(十四):携程APP移动网络优化实践(弱网识别篇)
本文从方案设计、代码开发到技术落地,详尽的分享了携程在移动端弱网识别方面的实践经验,如果你也有类似需求,这篇文章会是一个不错的实操指南。
26 1
|
24天前
|
缓存 监控 前端开发
优化网络应用的性能
【10月更文挑战第21天】优化网络应用的性能
15 2
|
22天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
67 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
运维 监控 安全
连锁药店网络优化策略:一站式融合方案提升竞争力
在数字化浪潮下,线上药店通过技术创新和线上线下融合,正重塑购药体验,提供24小时服务和医保结算便利。面对激烈竞争,连锁药店和中小药店纷纷通过优化网络架构、提升服务质量和加强合规管理来增强竞争力,实现高效、安全的数字化转型。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。

热门文章

最新文章