Matlab 秃鹰搜索算法优化极限学习机(BES-ELM)分类预测

简介: Matlab 秃鹰搜索算法优化极限学习机(BES-ELM)分类预测


✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着人工智能和机器学习的迅速发展,数据分类成为了许多领域中的重要任务。数据分类是将一组数据分成不同的类别或标签的过程,它在许多应用中起着至关重要的作用,例如图像识别、语音识别、金融风险评估等。在这个领域中,研究人员一直在寻求更加高效和准确的分类算法。

在过去的几十年中,许多经典的机器学习算法被提出和广泛应用,例如支持向量机(SVM)、人工神经网络(ANN)等。然而,这些算法在处理大规模数据集时存在一些问题,例如计算复杂度高、训练时间长等。为了解决这些问题,研究人员提出了一种新的分类算法,即极限学习机(ELM)。

极限学习机是一种单层前向神经网络,它在训练过程中只需调整输入层和输出层之间的权重,而隐藏层的权重是随机初始化的。这使得ELM具有快速训练和高效的特点。然而,ELM在处理一些复杂的数据集时,仍然存在一些问题,例如分类准确率不高、泛化能力差等。

为了进一步提高ELM的性能,研究人员提出了一种基于秃鹰算法优化的极限学习机(BES-ElM)。秃鹰算法是一种基于自然界中秃鹰捕食行为的优化算法,它模拟了秃鹰在捕食过程中的搜索策略。BES-ElM通过使用秃鹰算法来优化ELM的隐藏层权重,从而提高了ELM的分类性能。

BES-ElM的优化过程包括以下几个步骤:首先,随机初始化隐藏层权重。然后,使用秃鹰算法来搜索最优的隐藏层权重。在搜索过程中,秃鹰算法根据适应度函数评估每个解的质量,并根据一定的策略来更新解的位置。最后,根据优化后的权重进行数据分类。

与传统的ELM相比,BES-ElM具有以下优点:首先,BES-ElM能够更好地适应复杂的数据集,提高了分类准确率。其次,BES-ElM具有更好的泛化能力,能够在未见过的数据上取得较好的分类结果。此外,BES-ElM还具有较快的训练速度和较低的计算复杂度。

然而,虽然BES-ElM在处理数据分类问题上取得了一定的成果,但仍然存在一些挑战和改进的空间。例如,如何选择合适的参数和适应度函数,以及如何处理高维数据集等问题。因此,未来的研究可以进一步探索这些问题,并提出更加高效和准确的优化算法。

总而言之,基于秃鹰算法优化的极限学习机(BES-ElM)是一种有效的数据分类算法。它通过使用秃鹰算法来优化ELM的隐藏层权重,从而提高了ELM的分类性能。虽然BES-ElM仍然需要进一步研究和改进,但它已经显示出了在处理大规模和复杂数据集上的潜力。随着机器学习领域的不断发展,我们相信BES-ElM将在未来得到更广泛的应用和研究。

📣 部分代码

function Y = elmpredict(P,IW,B,LW,TF,TYPE)% ELMPREDICT Simulate a Extreme Learning Machine% Syntax% Y = elmtrain(P,IW,B,LW,TF,TYPE)% Description% Input% P   - Input Matrix of Training Set  (R*Q)% IW  - Input Weight Matrix (N*R)% B   - Bias Matrix  (N*1)% LW  - Layer Weight Matrix (N*S)% TF  - Transfer Function:%       'sig' for Sigmoidal function (default)%       'sin' for Sine function%       'hardlim' for Hardlim function% TYPE - Regression (0,default) or Classification (1)% Output% Y   - Simulate Output Matrix (S*Q)% Example% Regression:% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)% Y = elmtrain(P,IW,B,LW,TF,TYPE)% Classification% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)% Y = elmtrain(P,IW,B,LW,TF,TYPE)% See also ELMTRAIN% Yu Lei,11-7-2010% Copyright www.matlabsky.com% $Revision:1.0 $if nargin < 6    error('ELM:Arguments','Not enough input arguments.');end% Calculate the Layer Output Matrix HQ = size(P,2);BiasMatrix = repmat(B,1,Q);tempH = IW * P + BiasMatrix;switch TF    case 'sig'        H = 1 ./ (1 + exp(-tempH));    case 'sin'        H = sin(tempH);    case 'hardlim'        H = hardlim(tempH);end% Calculate the Simulate OutputY = (H' * LW)';if TYPE == 1    temp_Y = zeros(size(Y));    for i = 1:size(Y,2)        [max_Y,index] = max(Y(:,i));        temp_Y(index,i) = 1;    end    Y = vec2ind(temp_Y); end

⛳️ 运行结果

🔗 参考文献

[1] 刘子诺.基于秃鹰搜索算法和极限学习机的股票价格预测模型[J].中国管理信息化, 2022, 25(22):157-160.

[2] 徐翠.改进极限学习机亚健康识别算法研究[D].辽宁大学,2016.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
7天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
7天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
101 68
|
9天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
9天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
14天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
16天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
29天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
169 80
|
17天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
17天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
15天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章