使用应用于环境振动数据的 SSI-COV 算法自动识别线状结构的模态参数附matlab代码

简介: 使用应用于环境振动数据的 SSI-COV 算法自动识别线状结构的模态参数附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在结构工程领域,了解和分析结构的模态参数对于评估结构的健康状况和性能至关重要。传统上,模态参数的识别通常需要进行大量的实验测量和复杂的数据处理。然而,随着技术的不断发展,一种新的算法——SSI-COV算法,为自动识别线状结构的模态参数提供了一种更高效和准确的方法。

SSI-COV算法是基于结构系统辨识(SSI)理论的一种方法,它利用环境振动数据来识别结构的模态参数。该算法通过将结构的动力响应与环境激励信号进行相关分析,从而提取出结构的模态参数,如固有频率、阻尼比和模态形态等。

与传统的模态识别方法相比,SSI-COV算法具有以下几个优势。首先,它不需要进行额外的激励实验,只需要利用结构在自然环境中的振动响应数据即可。这样可以大大减少实验的时间和成本。其次,该算法能够自动识别多个模态参数,而无需人工干预。这对于复杂的结构系统来说尤为重要,因为它们可能具有多个模态。

在使用SSI-COV算法进行模态参数识别时,需要注意一些关键的步骤。首先,需要对环境振动数据进行预处理,包括滤波和去噪等。然后,需要选择合适的相关函数来计算结构的动力响应与激励信号之间的相关性。最后,通过对相关函数进行特征提取和模型拟合,可以得到结构的模态参数。

虽然SSI-COV算法在模态参数识别方面具有许多优势,但也存在一些局限性。首先,该算法对环境振动数据的质量要求较高,需要保证数据的准确性和完整性。其次,该算法对结构的线性特性有一定的假设,因此在应用于非线性结构时可能会出现一些误差。

综上所述,SSI-COV算法是一种有效的方法,可用于自动识别线状结构的模态参数。它可以减少实验的时间和成本,并提供准确和全面的模态参数信息。然而,在实际应用中,我们仍然需要根据具体情况选择合适的算法和方法,以确保模态参数的准确性和可靠性。

📣 部分代码

function [h] = plotStabDiag(fn,Az,fs,stablity_status,Nmin,Nmax)% -------------------------------------------------------------------------% [h] = plotStabDiag(fn,Az,fs,stablity_status,Nmin,Nmax) plots the% stabilization diagram of the identified eigen frequencies as a function% of the model order, calculated with the SSI-COV method.% -------------------------------------------------------------------------% Input:% fn: cell : eigen frequencies identified for multiple system orders.% Az : vector: Time serie of acceleration response (illustrative purpose)% fs: sampling frequency% stablity_status: cell of stability status for each model order% Nmin: scalar: minimal number of model order% Nmax: scalar: maximal number of model order% Output: h: handle of the figure% -------------------------------------------------------------------------% See also: SSICOV.m% -------------------------------------------------------------------------% Author: Etienne Cheynet, UIS% Updated on: 08/03/2016% -------------------------------------------------------------------------Npoles =Nmin:1:Nmax;[Saz,f]=pwelch(Az,[],[],[],fs);h = figure;ax1 = axes;hold on;box onfor jj=0:4,    y = [];    x = [];    for ii=1:numel(fn)        ind = find(stablity_status{ii}==jj);        x = [x;fn{ii}(ind)'];        y = [y;ones(numel(ind),1).*Npoles(ii)];    end    x1{jj+1}=x;    y1{jj+1}=y;endh1=plot(x1{1},y1{1},'k+','markersize',5);% new poleh2=plot(x1{2},y1{2},'ko','markerfacecolor','r','markersize',5);  % stable poleh3=plot(x1{3},y1{3},'bo','markersize',5); % pole with stable frequency and vectorh4=plot(x1{4},y1{4},'gsq','markersize',5);  % pole with stable frequency and dampingh5=plot(x1{5},y1{5},'gx','markersize',5); % pole with stable frequencyif isempty(h1),        h1=0;elseif isempty(h2),    h2=0;elseif isempty(h3),    h3=0;elseif isempty(h4),    h4=0;elseif isempty(h5),    h5=0;endH = [h1(1),h2(1),h3(1),h4(1),h5(1)];legend(H,...    'new pole',...    'stable pole',...    'stable freq. & MAC',...    'stable freq. & damp.',...    'stable freq.',...    'location','Northoutside','orientation','horizontal');ylabel('number of poles');xlabel('f (Hz)')xlim([0,max([fn{:}])*1.1])hold offax2 = axes('YAxisLocation', 'Right');linkaxes([ax1,ax2])plot(ax2,f,Saz./max(Saz).*0.001,'k');ax2.YLim = [0,Nmax];ax2.XLim = [0,max([fn{:}])*1.1];set(ax2,'yscale','log')ax2.Visible = 'off';ax2.XTick = [];ax2.YTick = [];set(gcf,'color','w')end

⛳️ 运行结果

🔗 参考文献

[1] Magalhaes, F., Cunha, A., & Caetano, E. (2009). Online automatic identification of the modal parameters of a long span arch bridge. Mechanical Systems and Signal Processing, 23(2), 316-329.

[2] Cheynet, E., Jakobsen, J. B., & Snæbjörnsson, J. (2016).Buffeting response of a suspension bridge in complex terrain. Engineering Structures, 128, 474-487.

[3] Cheynet, E., Jakobsen, J. B., & Snæbjörnsson, J. (2017).Damping estimation of large wind-sensitive structures.Procedia Engineering, 199, 2047-2053.

[4] Cheynet, E., Snæbjörnsson, J., & Jakobsen, J. B. (2017).Temperature Effects on the Modal Properties of a Suspension Bridge.In Dynamics of Civil Structures, Volume 2 (pp. 87-93). Springer.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等