【图像重建】在线全息图的迭代双图像自由重建附matlab代码

简介: 【图像重建】在线全息图的迭代双图像自由重建附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

在现代科技的不断发展中,图像重建技术已经成为了一个重要的研究领域。图像重建技术的目标是通过一系列的算法和方法,将模糊、损坏或不完整的图像进行修复和重建,以获得更清晰、更准确的图像结果。本文将重点介绍一种名为迭代双图像自由重建的在线全息图图像重建方法。

全息图是一种记录了物体的全部光波信息的图像。与传统的平面图像不同,全息图可以提供更多的信息,包括物体的形状、深度和光波的相位信息。因此,全息图在许多领域中被广泛应用,如医学成像、光学显微镜和三维显示等。

迭代双图像自由重建是一种基于全息图的图像修复和重建方法。该方法的核心思想是通过迭代的方式,利用两个全息图之间的差异信息来修复和重建原始图像。具体而言,该方法首先利用一个已知的参考全息图和一个待修复的全息图,计算两者之间的差异。然后,通过迭代的方式,逐步调整参考全息图的参数,使得两个全息图之间的差异逐渐减小,从而达到修复和重建原始图像的目的。

迭代双图像自由重建方法具有许多优点。首先,该方法能够利用全息图中的额外信息,提供更准确的图像重建结果。其次,该方法可以适应不同类型的图像,包括静态图像和动态图像。此外,该方法还可以应用于在线图像重建,实时性较高。

然而,迭代双图像自由重建方法也存在一些挑战和限制。首先,该方法需要大量的计算资源和时间,特别是在处理大规模图像时。其次,该方法对全息图的质量要求较高,如果全息图的质量较差,可能会导致重建结果的不准确。此外,该方法还需要合适的参数选择和调整,以获得最佳的重建效果。

总结起来,迭代双图像自由重建是一种有效的在线全息图图像重建方法。通过利用全息图中的额外信息,该方法可以提供更准确的图像重建结果。然而,该方法仍然面临一些挑战和限制,需要进一步的研究和改进。相信随着科技的不断进步,图像重建技术将会取得更大的突破和进展,为我们带来更清晰、更准确的图像结果。

🔥核心代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2d centered inverse Fourier transform%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Citation for this code andalgorithm:% Tatiana Latychevskaia and Hans-Werner Fink% "Practical algorithms for simulation and reconstruction of digital in-line holograms",% Appl. Optics 54, 2424 - 2434 (2015)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The code is written by Tatiana Latychevskaia, 2002% The version of Matlab for this code is R2010bfunction [out] = IFT2Dc(in)[Nx Ny] = size(in);f1 = zeros(Nx,Ny);for ii = 1:Nx    for jj = 1:Ny        f1(ii, jj) = exp(-i*pi*(ii + jj));    endendFT = ifft2(f1.*in);out = f1.*FT;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

❤️ 运行结果

⛄ 参考文献

[1] 赵震.无透镜同轴数字全息共轭像去除及相位再现研究[D].重庆大学,2021.

[2] 张亚萍,范厚鑫,许蔚,等.基于双声光调制器的全息图像重建方法及重建系统:CN202110128697.0[P].CN112925184A[2023-09-09].

spherical waves "Solution to the Twin Image Problem in Holography", Physical Review Letters 98, 233901 (2007)

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计







目录
打赏
0
0
0
0
848
分享
相关文章
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
基于一阶梯度的图像亚像素位移matlab仿真,带GUI界面
本项目提供图像亚像素位移估计算法,使用Matlab2022a开发。完整程序无水印运行效果佳,附带详细中文注释代码和操作视频。该算法通过一阶梯度信息和泰勒级数展开,实现比像素更精细的位置变化测量,广泛应用于医学影像、遥感图像、视频监控、精密测量等领域,显著提升图像配准和分析精度。
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面
本项目展示了一种基于图像形态学处理的移动物体目标跟踪和质心提取算法。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释及操作视频。算法通过多帧图像像素值求平均、中值法或高斯混合模型估计背景,结合形态学处理(开闭运算、阈值处理)去除噪声并优化目标检测,提高准确性。颜色直方图匹配用于目标跟踪,结构元素膨胀操作扩大搜索范围,增强鲁棒性。
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
147 5

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等