基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面

简介: 本项目展示了一种基于图像形态学处理的移动物体目标跟踪和质心提取算法。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释及操作视频。算法通过多帧图像像素值求平均、中值法或高斯混合模型估计背景,结合形态学处理(开闭运算、阈值处理)去除噪声并优化目标检测,提高准确性。颜色直方图匹配用于目标跟踪,结构元素膨胀操作扩大搜索范围,增强鲁棒性。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

    imshow(I2);   
    hold on
%     ylabel('0 100 200 300 400');
    xlim([0,400]);
    ylim([0,400]);
%     set(gca,'YDir','reverse')
    axis on
    hold on
    text(Xc(kk)-50,Yc(kk)+50,['(X,Y)=',num2str(Xc(kk)),',',num2str(Yc(kk))],'Color',[1,1,1]);
    hold off

    I2_set{kk} = I2;

    axes(handles.axes2);
    plot(Xr,Yr,'r-o');
    axis([0,C,0,R]);
    axis square

    axes(handles.axes3);
    plot([0:kk-1],smooth(V,8),'b-o');
    axis([0,length(files)-1,0,2000]);
    xlabel('time (s)');
    ylabel('移动速度um/s');
    axis square

    axes(handles.axes4);
    plot([0:kk-1],smooth(angles,8),'g-o');
    axis([0,length(files)-1,-180,180]);
    xlabel('time (s)');
    ylabel('移动方向');
    axis square


    pause(0.1);
end


% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
parameter;

times = [1:length(files)]';
data1 = [Xr',Yr'];
data2 = [V'];
data3 = [angles'];
%构建数据组
data   = [times,data1,data2,data3];
[m, n] = size(data);   
data_cell = mat2cell(data, ones(m,1), ones(n,1));
title  = {'Frame','Coordinate x','Coordinate y','Speed','Angle'};                          
result = [title;data_cell];                                           
NAME   = NAME+1;
%保存到excel中
s      = xlswrite(['Save',num2str(NAME),'.xls'], result);  
msgbox('Save Success');

4.算法理论概述
在计算机视觉领域,移动物体的目标跟踪和质心提取是重要的研究内容,具有广泛的应用,如智能监控、自动驾驶、人机交互等。图像形态学处理作为一种强大的图像处理工具,能够有效地对图像中的物体形状、结构等信息进行分析和处理,在移动物体目标跟踪和质心提取中发挥着关键作用。

image.png

通过对多帧图像的像素值求平均,得到背景图像的估计。中值法是取N帧图像中对应像素值的中值作为背景模型的像素值。高斯混合模型则假设每个像素点的颜色值是由多个高斯分布混合而成,通过学习这些高斯分布的参数来构建背景模型。
image.png

    检测方法可能会受到光照变化、阴影等因素的影响,产生误检测。为了提高目标检测的准确性,可以结合图像形态学处理。例如,对差异图像先进行开运算,去除噪声和小的干扰区域,再进行闭运算,填充目标物体内部的空洞和连接断裂部分,然后进行阈值处理,得到更准确的目标检测结果。

image.png

   其中n是颜色直方图的 bins 数量。通过在当前帧中搜索使得相似性  最大的区域作为目标物体在当前帧的位置。在搜索过程中,可以利用图像形态学处理对搜索区域进行限制和优化。例如,根据上一帧目标区域的形状和大小,使用相应的结构元素进行膨胀操作,扩大搜索范围,然后在膨胀后的区域内进行目标搜索,提高跟踪的鲁棒性。

image.png

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
199 0
|
1月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
106 0
|
1月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
167 0
|
1月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
149 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
102 0
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
139 8
|
1月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
129 8

热门文章

最新文章