QT+Python人脸表情特征识别

简介: QT+Python人脸表情特征识别
程序示例精选
QT+Python人脸表情特征识别
如需安装运行环境或远程调试,可点击
博主头像进入个人主页查看博主联系方式,由专业技术人员远程协助!

前言

这篇博客针对《QT+Python人脸表情特征识别》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

运行结果

文章目录

一、所需工具软件
二、使用步骤
1. 主要代码
4. 运行结果
三、在线协助

一、所需工具软件

1. Pycharm,Python
2. Qt

二、使用步骤

代码如下(示例):


# coding:utf-8
import sys
#从转换的.py文件内调用类
import cv2
import numpy as np
import sys
import tensorflow as tf

from untitled import Ui_Dialog
from PyQt5 import QtWidgets

from PyQt5 import QtWidgets, QtCore, QtGui
from PyQt5.QtCore import *

    def recogPerson(self):
        import os
        import cv2


        img = cv2.imread("temp/original.jpg")
        cv2.imwrite("save/recognPerson2.jpg", img)
        face_detect = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        eye_detect = cv2.CascadeClassifier('haarcascade_eye.xml')
        # 灰度处理
        gray = cv2.cvtColor(img, code=cv2.COLOR_BGR2GRAY)
        # 检查人脸 按照1.1倍放到 周围最小像素为5
        face_zone = face_detect.detectMultiScale(gray,1.3,5)
        # print ('识别人脸的信息:\n',face_zone)
        l = len(face_zone)


        ints = 0
        # 绘制矩形和圆形检测人脸
        for x, y, w, h in face_zone:
            ints += 1
            # 绘制矩形人脸区域
            if w < 1000:
                cv2.rectangle(img, pt1=(x, y), pt2=(x + w, y + h), color=[0, 0, 255], thickness=2)
                # 绘制圆形人脸区域 radius表示半径
                cv2.circle(img, center=(x + w // 2, y + h // 2), radius=w // 2, color=[0, 255, 0], thickness=2)
                roi_face = gray[y:y + h, x:x + w]  # 灰度图
                roi_color = img[y:y + h, x:x + w]  # 彩色图
                eyes = eye_detect.detectMultiScale(roi_face)
                for (ex, ey, ew, eh) in eyes:
                    cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)

        cv2.imwrite("save/recognPerson.jpg", img)
        #cv2.waitKey(0)

运行结果

三、在线协助:

如需安装运行环境或远程调试,可点击博主头像,进入个人主页查看博主联系方式,由专业技术人员远程协助!

1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作

博主个人主页:https://developer.aliyun.com/profile/expert/rfnzgp3sk3ahc
博主所有文章点这里:https://developer.aliyun.com/profile/expert/rfnzgp3sk3ahc
博主联系方式点这里:https://developer.aliyun.com/profile/expert/rfnzgp3sk3ahc
相关文章
|
1月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
40 1
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
46 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
|
1月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
1月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
2月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
1月前
|
机器学习/深度学习 开发者 Python
Python中进行特征重要性分析的9个常用方法
在Python机器学习中,特征重要性分析是理解模型预测关键因素的重要步骤。本文介绍了九种常用方法:排列重要性、内置特征重要性(如`coef_`)、逐项删除法、相关性分析、递归特征消除(RFE)、LASSO回归、SHAP值、部分依赖图和互信息。这些方法适用于不同类型模型和场景,帮助识别关键特征,指导特征选择与模型解释。通过综合应用这些技术,可以提高模型的透明度和预测性能。
113 0
|
3月前
|
机器学习/深度学习 分布式计算 大数据
几行 Python 代码就可以提取数百个时间序列特征
几行 Python 代码就可以提取数百个时间序列特征
|
3月前
|
机器学习/深度学习 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
本文通过可视化分析,总结了2024年考研国家分数线的变化趋势,指出管理类MBA降低5分,哲学、历史学、理学、医学等10个专业分数线上涨,而经济学等专业出现下降,反映出不同专业分数线受考生数量、竞争情况和政策调整等因素的影响。
69 2
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
|
3月前
|
机器学习/深度学习 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现
本文提供了2024泰迪杯B题“基于多模态特征融合的图像文本检索”的Python代码实现,包括问题分析、多模态特征提取、特征融合模型和算法的构建,以及如何使用召回率作为评价标准进行模型性能评估的详细说明。
52 2
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现
|
3月前
|
数据采集 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索20页论文及Python代码
本文介绍了2024年泰迪杯B题的解决方案,该题目要求构建基于多模态特征融合的图像文本检索模型和算法,通过深入分析和预处理数据集,构建了OFA、BertCLIP和ChineseCLIP三种多模态特征融合模型,并通过投票融合机制优化检索效果,实验结果表明所提模型在图像与文本检索任务中显著提高了检索准确性和效率。
106 2