# 【机械】基于偏微分方程工具箱 (TM)计算受压力载荷作用的结构板的挠度附matlab代码

✅作者简介：热爱科研的Matlab仿真开发者，修心和技术同步精进，matlab项目合作可私信。

🍎个人主页：Matlab科研工作室

🍊个人信条：格物致知。

## ⛄ 核心代码

%% Clamped, Square Isotropic Plate With a Uniform Pressure Load% This example shows how to calculate the deflection of a structural% plate acted on by a pressure loading% using the Partial Differential Equation Toolbox(TM).%%% PDE and Boundary Conditions For A Thin Plate% The partial differential equation for a thin, isotropic plate with a% pressure loading is%% $$\nabla^2(D\nabla^2 w) = -p$$%% where $D$ is the bending stiffness of the plate given by%% $$D = \frac{Eh^3}{12(1 - \nu^2)}$$%% and $E$ is the modulus of elasticity, $\nu$ is Poisson's ratio,% and $h$ is the plate thickness. The transverse deflection of the plate% is $w$ and $p$ is the pressure load.%% The boundary conditions for the clamped boundaries are $w=0$ and% $w' = 0$ where $w'$ is the derivative of $w$ in a direction% normal to the boundary.%% The Partial Differential Equation Toolbox(TM) cannot directly% solve the fourth order plate equation shown above but this can be% converted to the following two second order partial differential% equations.%% $$\nabla^2 w = v$$%% $$D \nabla^2 v = -p$$%% where $v$ is a new dependent variable. However, it is not obvious how to% specify boundary conditions for this second order system. We cannot% directly specify boundary conditions for both $w$ and $w'$.% Instead, we directly prescribe $w'$ to be zero and use the following% technique to define $v'$ in such a way to insure that $w$ also equals zero on% the boundary. Stiff "springs"% that apply a transverse shear force to the plate edge are distributed% along the boundary. The shear force along the boundary due to these% springs can be written $n \cdot D \nabla v = -k w$ where $n$ is the% normal to the boundary and $k$ is the stiffness of the springs.% The value of $k$ must be large enough that $w$ is approximately zero% at all points on the boundary but not so large that numerical errors% result because the stiffness matrix is ill-conditioned.% This expression is a generalized Neumann boundary condition supported% by Partial Differential Equation Toolbox(TM)%% In the Partial Differential Equation Toolbox(TM) definition for an% elliptic system, the $w$ and $v$ dependent variables are u(1) and u(2).% The two second order partial differential equations can be rewritten as%% $$-\nabla^2 u_1 + u_2 = 0$$%% $$-D \nabla^2 u_2 = p$$%% which is the form supported by the toolbox. The input corresponding to this% formulation is shown in the sections below.%%% Problem ParametersE = 1.0e6; % modulus of elasticitynu = .3; % Poisson's ratiothick = .1; % plate thicknesslen = 10.0; % side length for the square platehmax = len/20; % mesh size parameterD = E*thick^3/(12*(1 - nu^2));pres = 2; % external pressure%% Geometry and Mesh%% For a single square, the geometry and mesh are easily defined% as shown below.gdmTrans = [3 4 0 len len 0 0 0 len len];sf = 'S1';nsmTrans = 'S1';g = decsg(gdmTrans', sf, nsmTrans');[p, e, t] = initmesh(g, 'Hmax', hmax);%% Boundary Conditions%b = @boundaryFileClampedPlate;type boundaryFileClampedPlate%% Coefficient Definition%% The documentation for |assempde| shows the required formats% for the a and c matrices in the section titled% "PDE Coefficients for System Case". The most convenient form for c% in this example is $n_c = 3N$ from the table where $N$ is the number% of differential equations. In this example $N=2$.% The $c$ tensor, in the form of an $N \times N$ matrix of $2 \times 2$ submatrices% is shown below.%% $$% \left[% \begin{array}{cc|cc}% c(1) & c(2) & \cdot & \cdot \\% \cdot & c(3) & \cdot & \cdot \\ \hline% \cdot & \cdot & c(4) & c(5) \\% \cdot & \cdot & \cdot & c(6)% \end{array} \right]%$$%% The six-row by one-column c matrix is defined below.% The entries in the full $2 \times 2$ a matrix and the $2 \times 1$ f vector% follow directly from the definition of the% two-equation system shown above.%c = [1; 0; 1; D; 0; D];a = [0; 0; 1; 0];f = [0; pres];%% Finite Element and Analytical Solutions%% The solution is calculated using the |assempde| function and the% transverse deflection is plotted using the |pdeplot| function. For% comparison, the transverse deflection at the plate center is also% calculated using an analytical solution to this problem.%u = assempde(b,p,e,t,c,a,f);numNodes = size(p,2);pdeplot(p, e, t, 'xydata', u(1:numNodes), 'contour', 'on');title 'Transverse Deflection'numNodes = size(p,2);fprintf('Transverse deflection at plate center(PDE Toolbox)=%12.4e\n', min(u(1:numNodes,1)));% compute analytical solutionwMax = -.0138*pres*len^4/(E*thick^3);fprintf('Transverse deflection at plate center(analytical)=%12.4e\n', wMax);displayEndOfDemoMessage(mfilename)

## ⛳️ 代码获取关注我

### 🍅 仿真咨询

#### 9 雷达方面

##### 卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计

|
21小时前
|

**摘要:** 探索地下换热器的建模与温度检测，使用MATLAB2022a进行系统仿真，关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型，模拟温度场，考虑地质特性和水流影响。建模以网格单元描述温度变化，采用热电偶、红外和光纤测温技术验证模型并监控温度，各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
16 10
|
1月前
|

m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序

24 4
|
1月前
|

m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法，优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码，而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程，根据误码率评估性能并更新解码参数。最终，展示了迭代次数与优化过程的关系，并绘制了SNR与误码率曲线。
25 2
|
1月前
|

m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化（PSO）结合，以优化偏移参数，提升LDPC码解码性能。PSO通过迭代寻找最小化误码率（BER）的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数（BER）评估，最终在不同信噪比下展示OMS解码性能，并保存结果。
27 0
|
2月前
|

m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法，通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论，利用遗传算法进行全局优化，避免手动调整，提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤，通过仿真曲线展示了不同SNR下的误码率性能。
37 1
|
2月前
|

m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法，应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子，以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终，展示了SNR与误码率的关系，并保存了关键数据。
33 1
|
2月前
|

40 0
|
2月前
|

97 1
|
2月前

93 1
|
2月前
|

37 1