【信号去噪】基于马氏距离和EDF统计(IEE-TSP)的基于小波的多元信号去噪方法研究(Matlab代码实现)

简介: 【信号去噪】基于马氏距离和EDF统计(IEE-TSP)的基于小波的多元信号去噪方法研究(Matlab代码实现)

💥1 概述

文献来源:


摘要:

本文提出了一种多变量信号去噪方法,该方法采用了一种新颖的基于多变量适应度检验 (GoF) 的方法,该方法在离散小波变换 (DWT) 获得的多个数据尺度上应用。在所提出的多变量GoF测试中,我们首先利用平方马氏距离 (MD) 度量将输入的多变量数据从 M 维空间 R M 转换为正实数的单维空间 R + ,即 R M → R + ,其中 M > 1。由于MD度量的性质,R + 中的转换数据遵循着独特的分布。这使得我们能够应用基于经验分布函数 (EDF) 的统计量来进行GoF测试,从而定义一个多元正态性测试。我们进一步提出在从离散小波变换获得的多个输入数据尺度上局部应用上述测试,从而得到一个多变量信号去噪框架。在所提出的方法中,参考累积分布函数 (CDF) 被定义为多变量高斯随机过程的二次转换。因此,所提出的方法检查一组DWT系数是否属于多元参考分布,将属于参考分布的系数丢弃。我们通过对合成和真实世界数据集进行广泛模拟实验,证明了我们提出的方法的有效性。


原文摘要:


Abstract:


A multivariate signal denoising method is proposed which employs a novel multivariate goodness of fit (GoF) test that is applied at multiple data scales obtained from discrete wavelet transform (DWT). In the proposed multivariate GoF test, we first utilize squared Mahalanobis distance (MD) measure to transform input multivariate data residing in M-dimensional space R M to a single-dimensional space of positive real numbers R + , i.e., R M → R + , where M > 1. Owing to the properties of the MD measure, the transformed data in R + follows a distinct distribution. That enables us to apply the GoF test using statistic based on empirical distribution function (EDF) on the resulting data in order to define a test for multivariate normality. We further propose to apply the above test locally on multiple input data scales obtained from discrete wavelet transform, resulting in a multivariate signal denoising framework. Within the proposed method, the reference cumulative distribution function (CDF) is defined as a quadratic transformation of multivariate Gaussian random process. Consequently, the proposed method checks whether a set of DWT coefficients belong to multivariate reference distribution or not; the coefficients belonging to the reference distribution are discarded. The effectiveness of our proposed method is demonstrated by performing extensive simulations on both synthetic and real world datasets.


📚2 运行结果

其他情况就不一一展示。


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]K. Naveed and N. u. Rehman, "Wavelet Based Multivariate Signal Denoising Using Mahalanobis Distance and EDF Statistics," in IEEE Transactions on Signal Processing, vol. 68, pp. 5997-6010, 2020, doi: 10.1109/TSP.2020.3029659.


🌈4 Matlab代码、数据、文章

相关文章
|
2月前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
3月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
3月前
|
计算机视觉
【图像处理】基于灰度矩的亚像素边缘检测方法理论及MATLAB实现
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
96 6
|
3月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
63 0
|
4月前
|
算法 vr&ar
基于自适应波束成形算法的matlab性能仿真,对比SG和RLS两种方法
```markdown - MATLAB2022a中比较SG与RLS自适应波束成形算法。核心程序实现阵列信号处理,强化期望信号,抑制干扰。RLS以其高效计算权重,而SG则以简单和低计算复杂度著称。[12345] [6666666666] [777777] ```
|
6月前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
4月前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
5月前
|
机器学习/深度学习 数据可视化 算法
探索MATLAB世界:掌握基础知识与实用技能(1. MATLAB环境与基本操作 2. 数据类型与变量 3. 条件与循环,1. 数据分析与统计 2. 图像处理与计算机视觉 3. 信号处理与控制系统)
探索MATLAB世界:掌握基础知识与实用技能(1. MATLAB环境与基本操作 2. 数据类型与变量 3. 条件与循环,1. 数据分析与统计 2. 图像处理与计算机视觉 3. 信号处理与控制系统)
53 0
|
6月前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
77 2