基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式

简介: 本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法涉及理论知识概要
星座图整形技术旨在通过优化星座点的布局来改善系统的性能。这包括但不限于:

1.功率效率提升:通过非均匀分布星座点,可以减少符号间的距离,从而在相同的平均功率下,传输更多信息比特,但这也增加了对解调器的要求。

2.抗干扰能力增强:通过将星座点布局在更有利于区分的区域,即使在存在噪声或干扰的情况下,也能减少错误概率。

3.相位旋转:某些情况下,对星座图进行特定的旋转可以减少某些类型的干扰影响。

fb46e4ffc309b07236c22bb47133bdef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   随着QAM阶数的增加,数据传输速率得以提升,但同时也对信道质量、解调算法复杂度以及系统整体的抗干扰能力提出了更高要求。星座图整形是一种重要的手段,通过精心设计星座点布局,可以在保持或提高系统性能的同时,增加数据传输效率。在实际应用中,选择合适的QAM阶数和优化星座图设计是至关重要的,需要根据具体的通信环境和系统需求综合考量。

3.MATLAB核心程序
```% 生成随机比特序列
s = randi([0 1],LENbitsPerSym,1);
% QAM映射
Tx1 = Trainable_mapping(s,M);%**

Pnormal = max(max(abs(Tx1)));
% 功率归一化
Tx2 = func_power_normal(Tx1,Pnormal);
% 上采样
Tx3 = upsample(Tx2,Fs/F_AWG);
Tx4r = func_Trainable_filter_F(real(Tx3),Fs,F_AWG);
Tx4i = func_Trainable_filter_F(imag(Tx3),Fs,F_AWG);
Tx4 = Tx4r+sqrt(-1)*Tx4i;
% 再次功率归一化
Pnormal2 = max(max(abs(Tx4)));
Tx5 = func_power_normal(Tx4,Pnormal2);
%高斯白噪声信道
Rx = awgn(Tx5,SNR(i),'measured');
% 下采样
Rx2 = downsample(Rx,Fs/F_AWG);
z = func_RX_ww(Rx2,M,Pnormal2,Pnormal);% 解调
z2 = z(1:end);
err(i) = 1-length(find(s==double(z2)))/length(s)
end
figure;
plot(real(Rx2),imag(Rx2),'b.');
title('256QAM星座图');

figure;
semilogy(SNR,err,'b-o');
grid on
xlabel('SNR');
ylabel('error');

if M==16
save R2_16.mat Rx2 SNR err
end
if M==32
save R2_32.mat Rx2 SNR err
end
if M==64
save R2_64.mat Rx2 SNR err
end
if M==256
save R2_256.mat Rx2 SNR err
end
0X_065m

```

相关文章
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
48 31
|
3天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
140 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
106 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章

下一篇
DataWorks