基于自适应波束成形算法的matlab性能仿真,对比SG和RLS两种方法

简介: ```markdown- MATLAB2022a中比较SG与RLS自适应波束成形算法。核心程序实现阵列信号处理,强化期望信号,抑制干扰。RLS以其高效计算权重,而SG则以简单和低计算复杂度著称。[12345] [6666666666] [777777]```

1.程序功能描述
基于自适应波束成形算法的matlab性能仿真,对比SG和RLS两种方法.

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

```for ii = 1:MTKL
if SEL == 1
for i = 1:length(r)
r(:,i) = SD'*r(:,i);
A
= SD'a;
%xx : x

x(i) = W'r(:,i);
xx(i) = conj(x
(i));
%开始迭代
if i == 1
W_ = SD'
(inv(R)ainv((a'inv(R)a))e);
SD = SD - mu1
xx(i)(r(:,i)W' - inv(a' a )(a*W')(a'r(:,i)));
else
SD = SD - mu1xx(i)(r(:,i)W_' - inv(a' a )(aW')(a'r(:,i)));
W
= W - mu2xx(i)(eye(D) - inv(A'A_)A*A') r_(:,i);
end
rx = corrmtx(a
Sig_train(:,i),M-1);
RS = rx'rx;
rx = corrmtx(a
Sig_train(:,i),M-1);
ry = corrmtx(aSig_train(:,i)+Noise_train(:,i),M-1);
RI = rx'
ry;
end
SINR(D) = abs((W'SD'RSSDW)/(W'SD'RISDW));
end
%**
%RLS*
if SEL == 2
alpha = 1;
P = zeros(M,M);
P = zeros(D,M);
for i = 1:length(r)
r
(:,i) = SD'r(:,i);
Pdelay = P;
P = inv(R);
A_ = SD'
a;
Pdelay = P;
P = SD'P;
SD = (P
a*A
')/(a'Pa);
W = (Pa)/(A_'P_a);
k = alpha
Pdelayr(:,i)/(1+alphar(:,i)'Pdelayr(:,i));
P = alphaPdelay-alphakr(:,i)'Pdelay;
rx = corrmtx(aSig_train(:,i),31);
RI = rx'
rx;
rx = corrmtx(aSig_train(:,i),31);
ry = corrmtx(a
Sig_train(:,i)+Noisetrain(:,i),31);
RS = rx'*ry;
end
SINR(D) = abs((W
'SD'RISDW)/(W'SD'RSSDW_));
end
end
SINRs(:,ii) = SINR;
end
DD = D3(4:end);
SINRS2 = 20*log10(mean(SINRs(4:end,:),2));
figure;
plot(DD,SINRS2,'b-o');
grid on;
xlabel('Rank')
ylabel('SINR');
27_008m

```

4.本算法原理
自适应波束成形是阵列信号处理中的关键技术,用于在空间上选择性地增强期望信号并抑制干扰信号。在多种自适应波束成形算法中,随机梯度(Stochastic Gradient,SG)算法和递归最小二乘(Recursive Least Squares,RLS)算法是两种常用的方法。

   RLS的基本流程如下所示:

bc63c57053487da7f9e048e27c22a940_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   SG的基本流程如下所示:

e3a38b9e4e3c146abfc8d0563c1a1e69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
456 0
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
235 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
264 8
|
4月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
244 0
|
4月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
307 2
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
291 3
|
5月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
213 6
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
5月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
328 14
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)