【粒子群算法和蝴蝶算法组合】粒子群混沌混合蝴蝶优化算法研究(Matlab代码实现)

简介: 【粒子群算法和蝴蝶算法组合】粒子群混沌混合蝴蝶优化算法研究(Matlab代码实现)

💥1 概述

文献来源:

摘要:为了解决蝴蝶优化算法(BOA)精度低、收敛速度慢的问题,将两种或两种以上的算法进行杂交以获得优化问题的优解是研究的趋势。提出了一种新的混合算法HPSOBOA,并介绍了三种改进基本BOA的方法。因此,引入了基于一维三次映射的BOA初始化方法,并采用了非线性参数控制策略。此外,将粒子群优化(PSO)算法与BOA算法相结合,改进了全局优化的基本BOA算法。通过两个实验(包括26个知名的基准函数)验证了所提算法的有效性。实验对比结果表明,与PSO、BOA等已知群优化算法相比,混合HPSOBOA算法收敛速度快,在高维数值优化问题上具有更好的稳定性。


蝴蝶优化算法(BOA)由Arora和Singh于2018年提出[1]。


该算法的方法和概念最早在2015年国际信号处理、计算与控制会议(2015 ISPCC)上提出[2]。该算法提出后,作者对BOA进行了大量的研究。Arora和Singh[3]提出了一种改进的带有十个混沌映射的蝴蝶优化算法,用于解决三个工程优化问题。Arora和Singh[4]提出了一种新的混合优化算法,将标准BOA与人工蜂群(Artificial Bee Colony, ABC)算法相结合。Arora和Singh[5]利用BOA求解无线传感器网络中的节点定位问题,并将结果与粒子群优化算法(particle swarm optimization, PSO)和萤火虫算法(firefly algorithm, FA)进行了比较。Arora等[6]提出了一种改进的蝶形优化算法来解决机械设计优化问题。Singh和Anand[7]提出了一种新的自适应蝴蝶优化算法,这是一种改变基本BOA感觉模态的新现象。Sharma和Saha[8]提出了一种新的混合算法(m-MBOA),利用共生生物搜索(symbiosis organisms search, SOS)的互助阶段来增强BOA的开发能力。Yuan等[9]提出了一种改进的蝶形优化算法,根据年成本、能源效率和污染物减排等因素对系统性能进行优化分析。Li等[10]利用交叉熵方法提出了一种改进的工程设计问题BOA。


此外,所提出的优化算法根据其原理主要分为三类,其中著名的元启发式算法主要包括进化算法:遗传算法(Genetic algorithm, GA)[15,16]、差分进化算法(Differential Evolution, DE) [17];群体智能算法:粒子群算法(Particle swarm Optimization, PSO)[18]、蚁群算法(Ant Colony Optimization, ACO)[19]、人工蜂群算法(Artificial Bee Colony, ABC) [20];基于物理的算法:引力搜索算法(GSA)[21]、正弦余弦算法(SCA)[22]和Henry气溶解度优化算法(HGSO)[23]。近十年来,学者们提出了许多新的基于自然界动物行为的群体智能优化算法,也称为自然启发式算法,如蝙蝠启发算法(BA)[24]、磷虾群算法(KH)[25]、果蝇优化算法(FOA)[26]、灰狼优化算法(GWO)[27]、蛾焰优化算法(MFO)[28]、鲸鱼优化算法(WOA)[29]、Salp群算法(SSA)[30]、Grasshopper Optimization Algorithm (GOA)[31]和Marine predator Algorithm (MPA)[32]。要了解更多细节,读者可以参考论文[33-35],其中对最近和流行的算法进行了很好的回顾。


介绍了各种智能优化算法的混合算法和粒子群算法的研究现状。Zhen等[36]提出了一种新的模因算法,称为shuffle particle swarm optimization (SPSO),该算法将PSO与shuffle frog jumping algorithm (SFLA)相结合。Niu和Li[37]提出了一种结合PSO和DE的新型混合全局优化算法PSODE。Lai和Zhang[38]提出了一种结合PSO和GA的新型混合算法,并给出了23个基准问题的实验。Mirjalili和Hashim[39]提出了一种新的混合PSOGSA算法用于函数优化。Wang等[40]提出了一种基于磷虾群和量子粒子群优化(QPSO)的混合算法,用于基准和工程优化。Trivedi等[41]提出了一种新的混合PSO-DA算法,将PSO算法与蜻蜓算法(dragonfly algorithm, DA)相结合,进行全局数值优化。Trivedi等[42]针对全局数值优化问题提出了一种新的PSOWOA算法。Laskar等[43]在对粒子群算法和其他元启发式算法混合算法进行研究的基础上,提出了一种新的用于电子设计优化问题的混合HWPSO算法。此外,粒子群算法与BOA在结构上有一定的相似性,研究一种新的粒子群算法与BOA的混合算法具有重要意义。


📚2 运行结果

可视化:

%% plots
figure('Position',[500 400 800 200])  %[left bottom width height]
subplot(1,2,1);
func_plot_con(Function_name);
title(Function_name)
% xlabel('x_1');
% ylabel('x_2');
% zlabel([Function_name,'( x_1 , x_2 )'])
%% Convergence curves 
subplot(1,2,2);
semilogy(BOA_cg_curve,'b-','LineWidth',1)
hold on
semilogy(PSOBOA_cg_curve,'g-','LineWidth',1)
hold on
semilogy(HPSOBOA_cg_curve,'r-','LineWidth',1)
% axis tight
% grid off
xlabel('Iterations');
ylabel('Fitness value');
legend('BOA','PSOBOA','HPSOBOA')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现


目录
打赏
0
0
0
0
77
分享
相关文章
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
77 13
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
6月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章