💥1 概述
针对风光发电功率模拟面临的变量维度高、时空特征复杂等难题,提出风光发电功率场景的随机生成方法。考虑电网中长期分析需求,建立风光发电功率场景的优化削减方法、风、光、负荷出力各场景及概率、场景削减、负荷点的拉丁超立方抽样
📚2 运行结果
风电出力各场景及概率 s1 = 22.1083 19.8952 8.1786 10.9965 20.8133 18.8998 4.0167 30.0000 4.8795 19.9553 16.5858 6.2363 0.6114 8.2198 30.0000 22.9942 10.7087 20.2097 30.0000 20.3710 30.0000 23.7236 4.6623 22.2630 30.0000 23.7690 18.2472 4.5671 9.2437 6.6501 p1 = 0.2800 0.1300 0.2500 0.1200 0.2200 光伏出力各场景及概率 s2 = 21.7371 5.0435 2.6876 16.4512 15.6527 4.9094 11.8630 24.0627 7.6918 9.2009 11.0766 10.2721 9.8955 11.0822 12.1945 15.9150 26.4814 25.0274 11.3307 3.7676 17.0451 14.4192 2.4652 23.9298 21.0609 10.7515 27.9343 0.0276 14.6523 0.3021 p2 = 0.1000 0.3600 0.1700 0.2000 0.1700 负荷各场景及概率 s3 = 1 至 12 列 99.9906 90.3396 120.2778 60.0943 60.1246 200.0454 200.2310 59.9070 59.9944 45.0526 59.9000 59.9918 100.3270 90.0259 120.0310 59.9313 60.0856 200.1188 200.0442 59.9155 60.1028 45.1044 59.6990 59.7998 100.0654 89.8469 119.8712 60.1826 59.9710 199.6827 200.0648 60.0679 59.9774 45.0248 59.9154 60.0520 100.2865 90.0782 120.0698 60.0100 59.7670 199.9640 199.7488 60.2978 60.0525 45.1248 60.0318 60.1811 13 至 15 列 119.5965 59.8767 60.1041 120.1169 59.8973 59.7305 120.0160 59.7216 59.8314 120.2578 59.9649 59.7935 p3 = 0.2333 0.2333 0.2333 0.3000 >>
风电出力各场景及概率 s1 = 22.1083 19.8952 8.1786 10.9965 20.8133 18.8998 4.0167 30.0000 4.8795 19.9553 16.5858 6.2363 0.6114 8.2198 30.0000 22.9942 10.7087 20.2097 30.0000 20.3710 30.0000 23.7236 4.6623 22.2630 30.0000 23.7690 18.2472 4.5671 9.2437 6.6501 p1 = 0.2800 0.1300 0.2500 0.1200 0.2200 光伏出力各场景及概率 s2 = 21.7371 5.0435 2.6876 16.4512 15.6527 4.9094 11.8630 24.0627 7.6918 9.2009 11.0766 10.2721 9.8955 11.0822 12.1945 15.9150 26.4814 25.0274 11.3307 3.7676 17.0451 14.4192 2.4652 23.9298 21.0609 10.7515 27.9343 0.0276 14.6523 0.3021 p2 = 0.1000 0.3600 0.1700 0.2000 0.1700 负荷各场景及概率 s3 = 1 至 12 列 99.9906 90.3396 120.2778 60.0943 60.1246 200.0454 200.2310 59.9070 59.9944 45.0526 59.9000 59.9918 100.3270 90.0259 120.0310 59.9313 60.0856 200.1188 200.0442 59.9155 60.1028 45.1044 59.6990 59.7998 100.0654 89.8469 119.8712 60.1826 59.9710 199.6827 200.0648 60.0679 59.9774 45.0248 59.9154 60.0520 100.2865 90.0782 120.0698 60.0100 59.7670 199.9640 199.7488 60.2978 60.0525 45.1248 60.0318 60.1811 13 至 15 列 119.5965 59.8767 60.1041 120.1169 59.8973 59.7305 120.0160 59.7216 59.8314 120.2578 59.9649 59.7935 p3 = 0.2333 0.2333 0.2333 0.3000 >> 风电出力各场景及概率 s1 = 22.1083 19.8952 8.1786 10.9965 20.8133 18.8998 4.0167 30.0000 4.8795 19.9553 16.5858 6.2363 0.6114 8.2198 30.0000 22.9942 10.7087 20.2097 30.0000 20.3710 30.0000 23.7236 4.6623 22.2630 30.0000 23.7690 18.2472 4.5671 9.2437 6.6501 p1 = 0.2800 0.1300 0.2500 0.1200 0.2200 光伏出力各场景及概率 s2 = 21.7371 5.0435 2.6876 16.4512 15.6527 4.9094 11.8630 24.0627 7.6918 9.2009 11.0766 10.2721 9.8955 11.0822 12.1945 15.9150 26.4814 25.0274 11.3307 3.7676 17.0451 14.4192 2.4652 23.9298 21.0609 10.7515 27.9343 0.0276 14.6523 0.3021 p2 = 0.1000 0.3600 0.1700 0.2000 0.1700 负荷各场景及概率 s3 = 1 至 12 列 99.9906 90.3396 120.2778 60.0943 60.1246 200.0454 200.2310 59.9070 59.9944 45.0526 59.9000 59.9918 100.3270 90.0259 120.0310 59.9313 60.0856 200.1188 200.0442 59.9155 60.1028 45.1044 59.6990 59.7998 100.0654 89.8469 119.8712 60.1826 59.9710 199.6827 200.0648 60.0679 59.9774 45.0248 59.9154 60.0520 100.2865 90.0782 120.0698 60.0100 59.7670 199.9640 199.7488 60.2978 60.0525 45.1248 60.0318 60.1811 13 至 15 列 119.5965 59.8767 60.1041 120.1169 59.8973 59.7305 120.0160 59.7216 59.8314 120.2578 59.9649 59.7935 p3 = 0.2333 0.2333 0.2333 0.3000 >>
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]杨泽, 邓林斌, 王茹, 等. 算法与应用[J].知识体系, 2021, 232: 107483.
[2]Zhe Yang (2022). Improved-Aptenodytes-Forsteri-Optimization-IAFO-Algorithm