基于峰谷分时电价引导下的电动汽车充电负荷优化(matlab代码)

简介: 基于峰谷分时电价引导下的电动汽车充电负荷优化(matlab代码)

1 主要内容

该程序基本复现《基于峰谷分时电价引导下的电动汽车充电负荷优化》,代码主要做的是基于NSGA-II的电动汽车充电负荷优化,首先,在研究电动汽车用户充电需求的前提下,利用蒙特卡洛方法对2种不同充电方式进行模拟并对其进行分析;分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基础上,用实际案例对模型进行验证,利用多目标遗传优化算法进行求解,验证峰谷分时电价对电网负荷优化的有效性。

该程序主要分成两部分,第一部分是峰谷电价优化部分,第二部分通过确定的峰谷平电价观测电动汽车充电负荷变化情况。

  • 峰谷电价优化
  1. 程序采用NSGA-II算法,该算法是非常成熟、常用的多目标求解算法,是遗传算法的一种,作为智能优化算法,最关键的点是找到程序的输入和输出,剩下的即是采用算法进行连接即可,在该程序中,输入是分时电价作为变量,输出是两个目标,分别是负荷均方差最小和电动汽车用户充电费用最小。
目标1:

目标2:

优化结果:

对于帕累托多目标而言,会存在多组运行结果,即多个自变量+目标函数的组合,求解此类问题的帕累托最优解有以下常用的几种方法:权重系数变换法,给每个子目标函数赋予权重系数后转变为单目标优化问题;并列选择法,将群体所有个体按照子目标函数划分子群体,各自选出适应度高的个体以得到新的子群体,再将其合并,不断进行 至 最 大 次 数,最 终 得 到 多 目 标 优 化 的帕累托最优解。
  • 电动汽车充电负荷变化

该部分利用确定好的峰谷平电价,抽取1000辆电动汽车进行分析,考虑电动汽车的充电开始时刻、充电时长、行驶路程和价格弹性矩阵,得到电动汽车充电与原始负荷对比。

2 部分代码

M=2;%目标函数个数
p=1;
pop_size=200;           % 种群规模
no_runs=1;              % 计数器
gen_max=100;            % 最大遗传代数
fname='test_case';      % 目标函数    
V=3;                    %优化变量的数量
txl=[-5*ones(1,V);zeros(1,V);-5*ones(1,V);-1000*ones(1,V);zeros(1,V);-1/sqrt(V)*ones(1,V);zeros(1,V); 0 -5*ones(1,V-1);zeros(1,V)];
txu=[10*ones(1,V); ones(1,V);5*ones(1,V);1000*ones(1,V);ones(1,V);1/sqrt(V) *ones(1,V);ones(1,V);1 5*ones(1,V-1);ones(1,V)];
xl=[0.2  0.25  0.25] ;      % 变量的下限,最低电价0.25元每千瓦时
xu=[2  2  2] ;              % 变量的上限,最高电价2元每千瓦时
etac = 20;                  % 交叉分布指数
etam = 20;                  % 突变分布指数/突变常数
pm=1/V;                     % 变异概率
pcars=caculateload(1000);   %无序时负荷
 %原电网24小时负荷
 p0=[  455.39
       405.948
       333.086
       275.836
       205.576
       145.725
       130.112
       130.112
       137.918
       150.929
       163.941
       182.156
       208.178
       195.167
       156.134
       150.929
       161.338
       169.145
       169.145
       176.952
       195.167
       210.781
       296.654
       497.026];
%价格弹性矩阵,初始电价1元
priceq=[-0.623   0.3241    0.2305;       %峰时弹性16-24
        0.3553   -0.6166   0.2216;      %平时弹性8-16
        0.3215   0.3038   -0.6065];     %谷时弹性0-8 
Q=[]; 
for run = 1:no_runs    
    %% 原始种群
    xl_temp=repmat(xl, pop_size,1);
    xu_temp=repmat(xu, pop_size,1);
    x = xl_temp+((xu_temp-xl_temp).*rand(pop_size,V));


3 程序结果

第一部分已经展示了运行结果,该部分展示一下原文结果图,以便对比。

通过对比可见,程序复现效果很好!

相关文章
|
4月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
199 73
|
3月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
3月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
127 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
128 6
|
7月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
69 0
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章