考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法(matlab代码)

简介: 考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法(matlab代码)

1 主要内容

该程序复现博士文章《互动环境下分布式电源与电动汽车充电站的优化配置方法研究》第四章《考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法》,本章构建了考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置模型,以年化社会总成本最小为目标确定配电系统中分布式电源与电动汽车充电站的最佳安装位置和安装容量。该模型以线性化的Distflow潮流方程表征系统中各个状态量间的关系,并应用二阶锥模型进行求解。最后,本章将IEEE-33节点配电系统与江苏地区一个实际的地理区域相耦合,并以此为算例系统对光伏电站、微型燃 气轮机、电动汽车充电站的最优配置方案进行了求解,验证了所构建模型的有效性。

  • 目标函数

该部分目标函数考虑比较全面,因此也是复现的难点之一。
  • 电动汽车负荷建模

  • 算例系统图

  • 程序亮点
本程序将33节点系统和实际地理图有机结合,充分考虑了电动车充电备选节点和调度具体的影响,最终规划得到分布式电源、充电桩等的配置结果,很有参考价值!

2 部分代码

Jz=inv(J);%求解雅可比矩阵逆矩阵
B4j=Jz(33:64,33:64);%求解得到B4j值,未考虑平衡节点
B4=[B4j,zeros(32,1);zeros(1,33)];%得到包含平衡节点的B4
%%
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32
    upstream(i,i)=1;
end
for i=[1:16,18:20,22:23,25:31]
    dnstream(i,i+1)=1;
end
dnstream(1,18)=1;
dnstream(2,22)=1;
dnstream(5,25)=1;
dnstream(33,1)=1;
Vmax=[1.05*1.05*ones(32,1);1.05*1.05*ones(1,1)];
Vmin=[0.95*0.95*ones(32,1);1.05*1.05*ones(1,1)];
Pgmax=[zeros(32,1);100.*ones(1,1)];
Qgmax=[zeros(32,1);100.*ones(1,1)];
%计算负荷矩阵
Pload=busd(:,7);
Qload=busd(:,8);
P1=repmat(ploadz,33,1).*repmat(Pload,1,4*T)/100;%有功负荷矩阵
Q1=repmat(ploadz,33,1).*repmat(Qload,1,4*T)/100;%无功负荷矩阵
P2=zeros(33,4*T*N);
Q2=zeros(33,4*T*N);
for i=1:4*T%转化为4*T*N列矩阵
    for j=1:N
    P2(:,5*i+j-5)=P1(:,i);
    Q2(:,5*i+j-5)=Q1(:,i);
    end
end
%定义变量
V = sdpvar(nb,4*T*N);%电压的平方
I = sdpvar(nl,4*T*N);%电流的平方
P = sdpvar(nl,4*T*N);%线路有功
Q = sdpvar(nl,4*T*N);%线路无功
Pg = sdpvar(nb,4*T*N);%发电机有功
Qg = sdpvar(nb,4*T*N);%发电机无功
Npv = intvar(8,1);%光伏节点安装数量
%pv = sdpvar(nb,4*T*N);
qv = sdpvar(nb,4*T*N);
qv_h=sdpvar(8,4*T*N);
%sv = sdpvar(nb,4*T*N);
Ng = intvar(6,1);%燃气轮机安装数量
pg = intvar(nb,4*T*N);
Constraints = [];
%光伏处理
unitpv=10*1e-5;%单位光伏容量
pv_h=repmat(Npv,1,4*T*N).*repmat(dw_pv,8,4*T).*unitpv/10;
pv=[zeros(4,4*T*N);pv_h(1,:);zeros(5,4*T*N);pv_h(2,:);zeros(2,4*T*N);pv_h(3,:);zeros(1,4*T*N);pv_h(4,:);zeros(3,4*T*N);pv_h(5,:);zeros(2,4*T*N);pv_h(6,:);zeros(5,4*T*N);pv_h(7,:);zeros(1,4*T*N);pv_h(8,:);zeros(2,4*T*N)];
sv_h=unitpv.*repmat(Npv,1,4*T*N);
sv=[zeros(4,4*T*N);sv_h(1,:);zeros(5,4*T*N);sv_h(2,:);zeros(2,4*T*N);sv_h(3,:);zeros(1,4*T*N);sv_h(4,:);zeros(3,4*T*N);sv_h(5,:);zeros(2,4*T*N);sv_h(6,:);zeros(5,4*T*N);sv_h(7,:);zeros(1,4*T*N);sv_h(8,:);zeros(2,4*T*N)];
% Constraints = [Constraints,pv>=0,pv<=repmat(unitpv.*Npv,1,4*T*N)];
% Constraints = [Constraints,pv>=0,pv<=repmat(unitpv.*Npv,1,4*T*N)];
for i=1:33
    for t=1:T
        Constraints = [Constraints,cone([pv(i,t);qv(i,t)],sv(i,t))];
    end
end
qv=[zeros(4,4*T*N);qv_h(1,:);zeros(5,4*T*N);qv_h(2,:);zeros(2,4*T*N);qv_h(3,:);zeros(1,4*T*N);qv_h(4,:);zeros(3,4*T*N);qv_h(5,:);zeros(2,4*T*N);qv_h(6,:);zeros(5,4*T*N);qv_h(7,:);zeros(1,4*T*N);qv_h(8,:);zeros(2,4*T*N)];
Constraints = [Constraints,Npv>=0,Ng>=0,Npv<=100];
%微燃机处理


3 程序结果


相关文章
|
18天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
43 2
|
1月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
47 1
|
1月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
47 0
|
3月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
3月前
|
计算机视觉
【图像处理】基于灰度矩的亚像素边缘检测方法理论及MATLAB实现
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
96 6
|
3月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
88 0
|
3月前
|
Java 测试技术 Spring
分布式之配置中心
分布式之配置中心
50 1
|
3月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
63 0
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?