计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)1

简介: 计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)

运行视频及运行结果:

1690955810861.png


计及碳排放成本的电-气-热综合能源系纷充节点能价计算方法研究(Matlab代码实现)


目录


第一部分 文献一《计及新能源出力不确定性的电气设备综合能源系统协同优化》


0 引言


1 新能源出力不确定性处理


1.1 新能源出力预测误差分布


1.2 新能源出力的时间相关性


1.3 场景生成


2 计及温控负荷调节能力的电气综合能源系统协同优化建模


2.2.1 气网管道气流非线性约束


3 混合整数非线性模型的转化


3.1气网管道气流非线性约束


第二部分 电-气-热综合能源系统子系统建模


2.1 引言


2.2 电力子系统建模


2.3 天然气系统


2.3.1 天然气子系统稳态模型构建


2.3.2天然气管道流量方程线性化


2.3.3 天然气管道模型


2.4 热力子系统模型


2.4.1 热源模型


2.4.2 热网模型


2.4.3 热负荷模型


2.4.4 复杂的管道流量损失转化


第三部分 计及碳排放成本的综合能源系统最优多能流求解


3.1 引言


3.2 综合能源系统耦合元件建模


3.3 电-气-热综合能源最优多能流模型


3.3.1 目标函数


3.3.2 约束条件


3.3.3 求解方法


3.4 算例分析


3.4.1 PJM-5节点电力系统-7节点天然气系统-6节点热力系统算例


3.4.2 IEEE-39节点电力系统-比利时20节点天然气系统-6节点热力系统算例


第五部分 Matlab代码、数据、文章讲解


第一部分 文献一《计及新能源出力不确定性的电气设备综合能源系统协同优化》

0 引言

电气综合能源系统是通过配电网、天然 气网、风机、光伏和冷热电联产(CCHP)系统实现多

种能源的互补梯级利用的一种系统。


1 新能源出力不确定性处理

新能源出力的不确定性主要是指出力的预测误差。为了对其进行刻画,以此提高日前调度精准度,


本文首先采用预测箱对历史数据进行统计,以对预测误差分布进行建模。然后通过递归估计协方差矩阵刻画风电和光伏的时间相关性。最后生成新能源可能出力的场景,并对多场景进行削减以降低求解难度。


1.1 新能源出力预测误差分布

1.2 新能源出力的时间相关性

1.3 场景生成

2 计及温控负荷调节能力的电气综合能源系统协同优化建模

2.2.1 气网管道气流非线性约束

由于天然气流量方程是非线性的,因此要对其进行线性化处理。对方程进行变形之后进行分段线性化。

3 混合整数非线性模型的转化

第⒉部分建立的电气综合能源系统协同优化模型为混合整数非线性规划(MINLP)问题﹐其具

有NP-hard的特性。求解MINLP问题的难点主要为:


①难以判断得到的解为全局最优解﹔2决策变量包括整数变量与连续变量;3问题的非线性。求

解MINLP问题的算法有:智能算法、互补法、分支定界算法、Benders分解算法﹑模型转化算法[22]等。模型转化算法的一种思路是将MINLP问题通过线性化处理转化为混合整数二阶锥规划问题或二阶锥线性规划问题,再调用成熟的商业求解器对问题进行求解。该算法相比其他算法具有能在解决离散变量的同时,在较短时间内实现求取全局最优解的优势。因此,本文采用分段线性化以及二阶锥松弛对模型的非线性部分进行线性化处理。


模型含有六部分非线性项,分别为管道气流Weymouth 等式,CCHP三个非线性约束,以及电网潮流的两个非线性约束。


由于天然气流量方程是非线性的,因此要对其进行线性化处理。对方程进行变形之后进行分段线性化。

3.1气网管道气流非线性约束

           


分段m=50(管道流量方向的前提下);如果不知道流量的 m=100,在一、三象限各50。

(文献cajP18-P19也有weymouth方程的分段线性化处理,方法一样。)

第二部分 电-气-热综合能源系统子系统建模

 


2.1 引言

2.2 电力子系统建模

综合能源系统中的电力子系统常采用交流潮流模型,其模型如式(2-1)所示。


式中,P、Q分别为节点的有功功率和无功功率;Y表示电力子系统的节点导纳矩阵;U为节点电压向量。为降低求解难度和后续研究需要,电力子系统模型采用线性模型,即直流潮流模型,不考虑电力子系统中的无功功率和电压。直流潮流方程可表示如下:

式中,fll表示线路l上,从m点流向n点的功率;B为线路l的电纳参数;分别为线路l两端节点m和n的电压相角。为了保证电力子系统的安全稳定运行电力子系统需满足一定的约束条件,包括发电机出力约束、机组爬坡约束、支路潮流约束和节点功率平衡约束,具体表达如下:

2.3 天然气系统

2.3.1 天然气子系统稳态模型构建

天然气子系统主要由天然气源、天然气管道、压缩机和天然气负荷组成,其结构示意图如图2-2所示。


天然气子系统的建模包括系统中各个元件的建模和天然气管道流量的建模,其建模方

法可类比于电力子系统中各元件和线路潮流的建模方法,该类比关系如表2-1所示。


天然气在管道传输中会受到温度、流速、管道摩擦力等因素的影响,这些因素导致了节点气压和管道流量的变化。为减少计算量,综合能源系统中天然气子系统通常采用稳态模型,忽略上述因素对节点气压和管道流量的影响。

1)天然气源

2)节点气压约束

3)天然气管道流量

天然气管道流量与管道的直径、温度、压力等多种因素有关,且呈非线性关系。描述天然气管道流量方程的公式有多种,包括美国燃气协会公式、Colebrook-White 公式、Panhandle A公式、Weymouth 公式等。本章采用Weymouth稳态模型[23l来描述天然气管道流量,即流量仅与管道两端的压力有关,且由压力高的节点流向压力低的节点。以图2-2中管道k-n为例,流过该管道的天然气流量与节点气压的具体表达式为:


                                           

4)压缩机

由于天然气在传输过程中受到自身材料和外界因素的影响,会产生压力下降。为了使节点气压维持在正常水平,同时也减少天然气管道在燃气负荷高峰时出现输气阻塞的几率,需在天然气管道沿线安置压缩机。常见的压缩机通常分为燃气压缩机和电压缩机[24]两类。由于压缩机所消耗的能量(电能或天然气)较少,本文为简化计算,仅保留压缩机两端的节点气压关系,不考虑压缩机消耗的能量。具体表达式如下:


(压缩比取值1.5)

5)节点流量平衡方程

相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
101 80
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
19天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
19天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
21天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章