基于人工大猩猩部队优化CNN-LSTM(GTO-CNN-LSTM)多变量时间序列预测(Matlab代码实现)

简介: 基于人工大猩猩部队优化CNN-LSTM(GTO-CNN-LSTM)多变量时间序列预测(Matlab代码实现)

💥1 概述

专家学者根据对人类视觉的研究,提出了注意力机制,计算机视觉、自然语言处理等领域[14-17]引入该机制优化现有模型,学习并确定重点关注的目标区域,使模型能够在有限资源下关注最有效的信息。本文基于这一机制改进 CNN 联合 LSTM 的体系结构,通过注意力机制处理被现有结构忽略的短序列特征的重要度差异,提取显著细粒度特征,同时便于LSTM更有效地捕捉时

间依赖性。

针对 CNN 联合 LSTM 时,忽略短期特征重要度而导致的重要特征丢失、长期时序规律挖掘有待优化等问题,本文提出基于注意力机制的 CNN-LSTM 预测模型。设计基于注意力机制的CNN结构,基于标准CNN,以并行注意力支路提取显著性特征。注意力支路比CNN设计了更大的输入尺度,以扩大输入感受野,从而更全面获取时序上下文信息,学习局部序列特征的重要程度。注意力模块通过提升最终模型中重要时序特征的影响力,降低最终模型中非重要特征的影响力,有效地应对模型未能较好区分时序特征重要程度差异性的不足。同时,标准 CNN 模块和注意力机制模块以不同长度序列作为输入的多尺度输入方式,能有效提取更丰富的短序列特征。LSTM 从前端抽取出的细粒度特征

中抽取粗粒度特征,精细化处理不同维度特征,并且能够一定程度避免因步长过长造成的记忆丢失和梯度弥散。

通过基于注意力机制的 CNN-LSTM 模型,实现粗细粒度特征融合,全面刻画时序数据。负荷需求量预测为典型的时序预测问题,负荷需求量变化受不同特征影响,并且短时间内各特征的影响程度不同[13]。本文对热电联产企业历史数据进行实验,设计并调整模型结构,最终搭建一种有效的时序预测模型,实验预测结果优于自回归积分滑动平均、支持向量回归和单一的神经网络模型。


GTO通常遵循以下几个规则来搜索解决方案:


1.GTO算法的优化空间包含三种类型的解决方案,其中X被称为大猩猩的位置向量,GX被称为大猩猩候选位置向量,在每个阶段创建,如果其性能优于当前解决方案,则更新。最后,银背猩猩silverback是每次迭代中找到的最佳解决方案。


2.考虑到为优化操作选择的搜索种群的数量,整个群体中只有一只银背猩猩。


3.三种类型的X、GX和silverback解决方案精确模拟了大猩猩在自然界中的社交生活。


4.大猩猩可以通过寻找更好的食物来源或在一个公平而强壮的群体中定位来增加它们的力量。在GTO中,在GTO算法中称为GX的每次迭代中都会创建解决方案。如果找到的解决方案是新的(GX),它将替换当前的解决方案(X)。否则,它将保留在内存中(GX)。


5.大猩猩倾向于集体生活,因此无法单独生活。因此,他们作为一个群体寻找食物,并继续生活在一个银背猩猩的领导下,领导着所有的群体决策。在我们的公式化阶段,假设种群中最差的解是大猩猩群中最弱的成员,大猩猩试图避开最差的解,接近最佳解(银背),从而改善大猩猩的所有位置。

📚2 运行结果

部分代码:

function result(true_value,predict_value,type)
disp(type)
rmse=sqrt(mean((true_value-predict_value).^2));
disp(['根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(true_value-predict_value));
disp(['平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs((true_value-predict_value)./true_value));
disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])
R2 = 1 - norm(true_value-predict_value)^2/norm(true_value - mean(true_value))^2;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]吴勇,高昕,郭灏阳,刁海岸,刘庆丰,杨强强.基于优化的VMD-CNN-LSTM模型的光伏功率预测[J].邵阳学院学报(自然科学版),2022,19(06):9-17.


🌈4 Matlab代码实现


目录
打赏
0
0
0
0
78
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
103 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
232 10
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
583 7

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等