基于人工大猩猩部队优化CNN-LSTM(GTO-CNN-LSTM)多变量时间序列预测(Matlab代码实现)

简介: 基于人工大猩猩部队优化CNN-LSTM(GTO-CNN-LSTM)多变量时间序列预测(Matlab代码实现)

💥1 概述

专家学者根据对人类视觉的研究,提出了注意力机制,计算机视觉、自然语言处理等领域[14-17]引入该机制优化现有模型,学习并确定重点关注的目标区域,使模型能够在有限资源下关注最有效的信息。本文基于这一机制改进 CNN 联合 LSTM 的体系结构,通过注意力机制处理被现有结构忽略的短序列特征的重要度差异,提取显著细粒度特征,同时便于LSTM更有效地捕捉时

间依赖性。

针对 CNN 联合 LSTM 时,忽略短期特征重要度而导致的重要特征丢失、长期时序规律挖掘有待优化等问题,本文提出基于注意力机制的 CNN-LSTM 预测模型。设计基于注意力机制的CNN结构,基于标准CNN,以并行注意力支路提取显著性特征。注意力支路比CNN设计了更大的输入尺度,以扩大输入感受野,从而更全面获取时序上下文信息,学习局部序列特征的重要程度。注意力模块通过提升最终模型中重要时序特征的影响力,降低最终模型中非重要特征的影响力,有效地应对模型未能较好区分时序特征重要程度差异性的不足。同时,标准 CNN 模块和注意力机制模块以不同长度序列作为输入的多尺度输入方式,能有效提取更丰富的短序列特征。LSTM 从前端抽取出的细粒度特征

中抽取粗粒度特征,精细化处理不同维度特征,并且能够一定程度避免因步长过长造成的记忆丢失和梯度弥散。

通过基于注意力机制的 CNN-LSTM 模型,实现粗细粒度特征融合,全面刻画时序数据。负荷需求量预测为典型的时序预测问题,负荷需求量变化受不同特征影响,并且短时间内各特征的影响程度不同[13]。本文对热电联产企业历史数据进行实验,设计并调整模型结构,最终搭建一种有效的时序预测模型,实验预测结果优于自回归积分滑动平均、支持向量回归和单一的神经网络模型。


GTO通常遵循以下几个规则来搜索解决方案:


1.GTO算法的优化空间包含三种类型的解决方案,其中X被称为大猩猩的位置向量,GX被称为大猩猩候选位置向量,在每个阶段创建,如果其性能优于当前解决方案,则更新。最后,银背猩猩silverback是每次迭代中找到的最佳解决方案。


2.考虑到为优化操作选择的搜索种群的数量,整个群体中只有一只银背猩猩。


3.三种类型的X、GX和silverback解决方案精确模拟了大猩猩在自然界中的社交生活。


4.大猩猩可以通过寻找更好的食物来源或在一个公平而强壮的群体中定位来增加它们的力量。在GTO中,在GTO算法中称为GX的每次迭代中都会创建解决方案。如果找到的解决方案是新的(GX),它将替换当前的解决方案(X)。否则,它将保留在内存中(GX)。


5.大猩猩倾向于集体生活,因此无法单独生活。因此,他们作为一个群体寻找食物,并继续生活在一个银背猩猩的领导下,领导着所有的群体决策。在我们的公式化阶段,假设种群中最差的解是大猩猩群中最弱的成员,大猩猩试图避开最差的解,接近最佳解(银背),从而改善大猩猩的所有位置。

📚2 运行结果

部分代码:

function result(true_value,predict_value,type)
disp(type)
rmse=sqrt(mean((true_value-predict_value).^2));
disp(['根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(true_value-predict_value));
disp(['平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs((true_value-predict_value)./true_value));
disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])
R2 = 1 - norm(true_value-predict_value)^2/norm(true_value - mean(true_value))^2;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]吴勇,高昕,郭灏阳,刁海岸,刘庆丰,杨强强.基于优化的VMD-CNN-LSTM模型的光伏功率预测[J].邵阳学院学报(自然科学版),2022,19(06):9-17.


🌈4 Matlab代码实现


相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
16天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章