✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
基于卷积神经网络(Convolutional Neural Network, CNN)的数据分类是一种常见的机器学习任务。CNN图像分类、语音识别等领域取得了很大的成功。
下面是基于CNN的数据分类的基本步骤:
- 数据准备:收集和准备用于训练和测试的数据集。数据集应包含有标记的样本,即每个样本都有对应的类别标签。
- 数据预处理:对数据进行预处理,包括图像的缩放、裁剪、灰度化等操作,以使其适应CNN的输入要求。
- 构建CNN模型:设计并构建一个CNN模型,通常包括卷积层、池化层、全连接层等组件。可以根据具体任务和数据集的特点进行模型的设计和调整。
- 模型训练:使用训练数据集对CNN模型进行训练。通过反向传播算法和优化算法(如随机梯度下降)来更新模型的权重和偏置,使其逐渐适应训练数据。
- 模型评估:使用测试数据集对训练好的CNN模型进行评估。计算模型在测试集上的准确率、精确率、召回率等指标,评估模型的性能。
- 模型优化:根据评估结果对CNN模型进行优化。可以尝试调整模型的结构、超参数(如学习率、批大小等)或采用正则化技术(如dropout、L2正则化)来提高模型的性能。
- 模型应用:使用优化后的CNN模型对新的未标记数据进行分类预测。
需要注意的是,CNN的成功应用还依赖于合适的数据集、适当选择的模型架构和参数调整,以及充足的计算资源和训练时间。在实际应用中,还需要注意数据集的质量和规模,以及模型的泛化能力和鲁棒性。
⛄ 代码
%% 清空环境变量warning off % 关闭报警信息close all % 关闭开启的图窗clear % 清空变量clc % 清空命令行%% 导入数据res = xlsread('数据集.xlsx');%% 划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%% 数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train)';t_test = categorical(T_test )';%% 数据平铺% 将数据平铺成1维数据只是一种处理方式% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构% 但是应该始终和输入层数据结构保持一致p_train = double(reshape(P_train, 12, 1, 1, M));p_test = double(reshape(P_test , 12, 1, 1, N));%% 构造网络结构layers = [ imageInputLayer([12, 1, 1]) % 输入层 convolution2dLayer([2, 1], 16, 'Padding', 'same') % 卷积核大小为 2*1 生成16个卷积 batchNormalizationLayer % 批归一化层 reluLayer % relu 激活层 maxPooling2dLayer([2, 1], 'Stride', [2, 1]) % 最大池化层 大小为 2*1 步长为 [2, 1] convolution2dLayer([2, 1], 32, 'Padding', 'same') % 卷积核大小为 2*1 生成32个卷积 batchNormalizationLayer % 批归一化层 reluLayer % relu 激活层 fullyConnectedLayer(4) % 全连接层(类别数) softmaxLayer % 损失函数层 classificationLayer]; % 分类层%% 参数设置options = trainingOptions('adam', ... % Adam 梯度下降算法 'MaxEpochs', 500, ... % 最大训练次数 500 'InitialLearnRate', 1e-3, ... % 初始学习率为 0.001 'L2Regularization', 1e-4, ... % L2正则化参数 'LearnRateSchedule', 'piecewise', ... % 学习率下降 'LearnRateDropFactor', 0.1, ... % 学习率下降因子 0.1 'LearnRateDropPeriod', 400, ... % 经过450次训练后 学习率为 0.001 * 0.1 'Shuffle', 'every-epoch', ... % 每次训练打乱数据集 'ValidationPatience', Inf, ... % 关闭验证 'Plots', 'training-progress', ... % 画出曲线 'Verbose', false);%% 训练模型net = trainNetwork(p_train, t_train, layers, options);%% 预测模型t_sim1 = predict(net, p_train); t_sim2 = predict(net, p_test ); %% 反归一化T_sim1 = vec2ind(t_sim1');T_sim2 = vec2ind(t_sim2');%% 性能评价error1 = sum((T_sim1 == T_train)) / M * 100 ;error2 = sum((T_sim2 == T_test )) / N * 100 ;%% 绘制网络分析图analyzeNetwork(layers)%% 数据排序[T_train, index_1] = sort(T_train);[T_test , index_2] = sort(T_test );T_sim1 = T_sim1(index_1);T_sim2 = T_sim2(index_2);%% 绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};title(string)xlim([1, N])grid%% 混淆矩阵figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized'; figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';
⛄ 运行结果
⛄ 参考文献
[1] 张兆晨,冀俊忠.基于卷积神经网络的fMRI数据分类方法[J].模式识别与人工智能, 2017, 30(6):10.DOI:10.16451/j.cnki.issn1003-6059.201706008.