双层优化入门(2)—基于yalmip的双层优化求解(附matlab代码)

简介: ​上一篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法,这篇博客将介绍使用yalmip的双层优化问题的求解方法。1.KKT函数通过调用yalmip工具箱中的KKT函数,可以直接求出优化问题的KKT条件,省去自己手动写的步骤。2.solvebilevel函数solvebilevel是yalmip工具箱内置的求解双层优化问题的函数。也就是通过这个函数,不需要咱手动写KKT条件,也不需要使用KKT函数,直接把上、下层优化的目标函数、约束条件往里面一放,就能求出结果。​

         上一篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法,这篇博客将介绍使用yalmip的双层优化问题的求解方法。

1.KKT函数

       通过调用yalmip工具箱中的KKT函数,可以直接求出优化问题的KKT条件,省去自己手动写的步骤,函数用法如下:

[KKTsystem, details] = kkt(Constraint,Objective,z)

image.gif

       其中z表示优化变量,KKTsystem存储KKT条件的约束表达式,details是一个结构体变量,用于存储KKT条件的细节。以上一篇博客中双层优化问题的下层优化问题为例:


matlab代码:

%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints=[-3*x+y <= -3 , 3*x+y <= 30];
objective=-y;
[KKTsystem, details] = kkt(Constraints,objective,x);

image.gif

运行结果:

image.gif


       将下层优化的KKT条件作为约束添加到上层优化中,就可以求出这个双层优化的结果:

%% 清空
clc
clear
close all
warning off
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints_down=[-3*x+y <= -3 , 3*x+y <= 30];
objective_down=-y;
[KKTsystem , details] = kkt(Constraints_down,objective_down,x);
Constraints_up=[2*x-3*y >= -12 , x+y <= 14];
objective_up=-x-2*y;
ops=sdpsettings('verbose', 0 , 'solver', 'gurobi');
result=optimize([KKTsystem,Constraints_up,boundingbox([Constraints_up,Constraints_down])],objective_up,ops);
%% 输出模型
saveampl(KKTsystem,objective_down,'KKT_model');
%% 输出结果
disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
disp(['最优函数值=',num2str(value(objective_up))])

image.gif

       求解的结果如下:

image.gif

       和上一篇博客手动写KKT的求解结果一致。

       上面的例子是一个简单的线性双层优化问题,yalmip官方文档中给出了使用KKT函数求解非线性双层优化的例子。这个双层优化问题如下:

image.gif

一样可以用KKT函数求解,代码如下(这是官网提供的代码):

sdpvar x1 x2 y1 y2 y3
OO = -8*x1-4*x2+4*y1-40*y2-4*y3;
OO = OO+OO^2;
CO = [x1>=0, x2>=0];
OI = (x1+2*x2+y1+y2+2*y3)^2;
CI = [[y1 y2 y3] >= 0,
       -y1+y2+y3 <= 10,
      2*x1-y1+2*y2-0.5*y3 <= 10,
      2*x2+2*y1-y2-0.5*y3 <= 9.7];
[K,details] = kkt(CI,OI,[x1 x2])
optimize([K,CO,boundingbox([CI,CO]),details.dual<=100],OO)

image.gif

求解结果为:

最优目标函数为-0.25

x1=0.0625,x2=0,y1=0,y2=0,y3=0。

2.solvebilevel函数

       solvebilevel是yalmip工具箱内置的求解双层优化问题的函数。也就是通过这个函数,不需要咱手动写KKT条件,也不需要使用KKT函数,直接把上、下层优化的目标函数、约束条件往里面一放,就能求出结果。

       代码如下:

%% 清空
clc
clear
close all
warning off
%% 目标函数和约束条件
x=sdpvar(1);
y=sdpvar(1);
Constraints_down=[-3*x+y <= -3 , 3*x+y <= 30];
objective_down=-y;
Constraints_up=[2*x-3*y >= -12 , x+y <= 14];
objective_up=-x-2*y;
solvebilevel(Constraints_up,objective_up,Constraints_down,objective_down,y)
%% 输出结果
disp(['最优解:x=',num2str(value(x)),',y=',num2str(value(y))])
disp(['最优函数值=',num2str(value(objective_up))])

image.gif

求解结果如下:

image.gif

        和上篇博客手动写KKT条件,这篇博客利用KKT函数求解的结果都是一样的,确实比较省事。但也要注意,这个函数只适用于规模较小的问题,如果问题规模比较大,还是需要自己手动进行双层问题的求解。

完整代码可以从这里获取:

双层优化入门(2)-基于yalmip的双层优化求解

参考资料均来源于yalmip官方文档:

[1]KKT函数的用法介绍

[2]双层优化的求解

[3]双层优化求解的备用方法

[4]solvebilevel函数用法介绍

相关文章
|
1天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
4天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
19 6
|
2天前
|
传感器 算法
ANC主动降噪理论及Matlab代码实现
ANC主动降噪理论及Matlab代码实现
|
4天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
15天前
|
算法
基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
摘要: 本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。
|
14天前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
16天前
|
算法
m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
18 2
|
16天前
|
算法 调度 决策智能
基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真
该文介绍了车辆路径问题(VRP)的优化求解,特别是动态车辆路径问题(DVRP)。在MATLAB2022a中运用GA-PSO混合优化算法进行测试,展示了运行结果图像。核心程序包含粒子更新、交叉、距离计算等步骤。DVRP在物流配送、运输调度中有广泛应用,目标是最小化行驶距离并满足车辆容量限制。遗传算法通过选择、交叉和变异操作寻找解,而粒子群优化模拟鸟群行为更新速度和位置。GA-PSO混合算法结合两者优点,提高搜索效率。在DVRP中,算法需考虑问题特性和约束,以找到高质量解。
|
3天前
|
算法
基于蝗虫优化的KNN分类特征选择算法的matlab仿真
摘要: - 功能:使用蝗虫优化算法增强KNN分类器的特征选择,提高分类准确性 - 软件版本:MATLAB2022a - 核心算法:通过GOA选择KNN的最优特征以改善性能 - 算法原理: - KNN基于最近邻原则进行分类 - 特征选择能去除冗余,提高效率 - GOA模仿蝗虫行为寻找最佳特征子集,以最大化KNN的验证集准确率 - 运行流程:初始化、评估、更新,直到达到停止标准,输出最佳特征组合
|
30天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
136 4