基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: **摘要:**实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。

1.程序功能描述
变异混合蛙跳算法的车间调度最优化,可以任意调整工件数和机器数,输出甘特图。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

3.核心程序

Pop_n = round(sqrt(Npop));                  
Pop_s = ceil(Npop/Pop_n);               
Npop  =Pop_s*Pop_n;                      

[Xs,ff] = func_initial(T,Npop);

fout = zeros(Iters,1);                                      
for i = 1:Iters
i
    [ff,I] = sort(ff,'descend');
Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        Pops       = Xs(j:Pop_n:end,:);            % 子种群
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_FLA(T,Pops,ff_,Pmax,Fmax);

Xs(j:Pop_n:end,:) = Popss;
ff(j:Pop_n:end,:) = F3;
    end

    [Xsolve,ybest]  = func_Eval(Xs,ff);                      % 进化结果评估


fout(i) = -mean(ybest);
end




figure
[Fouts,Etime] = func_fitness(T,Xsolve);
Stime         = Etime-T(:,Xsolve); % 开始时间
fval          = -Fouts;
M1            = size(T,1);    % 行数M1为机器数
NX            = length(Xsolve);    % 列数NX为工件数
for i = 1:M1
    for j = 1:NX
        x1 = Stime(i,j);
        x2 = Etime(i,j);
        y1 = i-1;
        y2 = i-0.05;
fill([x1 x2 x2 x1],[y1 y1 y2 y2],[0,1,0]);
        text(x1*0.55+x2*0.45,(y1+y2)/2,[num2str(Xsolve(j))],'Fontsize',8,'Color','k');
        hold on;
    end
    text(-0.8,(y1+y2)/2,['机器 ',num2str(i)],'Fontsize',8,'Color','k');
end

hold off; 
xlabel('时间'); 
set(gca,'ytick',[],'YDir','reverse','Color',[1 1 1]);
axis([0 fval 0 M1-0.05]);
title(['工件数:',num2str(NX),', 机器数:',num2str(M1),', 最优值:',num2str(fval)]);


figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');
21

4.本算法原理
基于变异混合蛙跳算法的车间调度最优化是一种结合了蛙跳算法(Shuffled Frog Leaping Algorithm, SFLA)和变异策略的优化方法,用于解决车间调度问题(Job-Shop Scheduling Problem, JSSP)。

4.1 车间调度问题(JSSP)描述
给定一个车间,其中有 (n) 个作业(Jobs)和 (m) 台机器(Machines)。每个作业由一系列工序(Operations)组成,每个工序必须在特定的机器上完成,且每个作业的工序顺序是预先确定的。JSSP的目标是为每个机器找到一个作业工序的序列,使得所有作业的总完成时间最小化。

4.2 蛙跳算法(SFLA)基本原理
蛙跳算法是一种群体智能优化算法,模拟了蛙群在寻找食物时的跳跃行为。在SFLA中,蛙群被分为多个子群,每个子群内的蛙通过局部搜索和信息交换寻找最优解。VHSFLA在基本SFLA的基础上引入了变异策略,以增强算法的全局搜索能力和避免陷入局部最优解。

4.2.1 初始化
初始化蛙群:随机生成一定数量的蛙(解),每个蛙代表一个可能的作业调度方案。
分组:将蛙群分为多个子群。
4.2.2 局部搜索
在每个子群内,蛙按照一定的规则进行跳跃(即解的更新)。跳跃的步长和方向通常由当前蛙的位置、子群内最优蛙的位置以及全局最优蛙的位置决定。

4.2.3 全局信息交换
经过一定次数的局部搜索后,子群内的蛙会与其他子群的蛙进行信息交换,以促进全局搜索。

4.2.4 变异策略
为了增强算法的全局搜索能力,VHSFLA引入了变异策略。变异操作可以随机地改变蛙的某些基因(即作业工序的顺序),从而产生新的解。

4.2.5 终止条件
算法会在满足一定条件时终止,如达到最大迭代次数或解的质量满足要求。

相关文章
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
27天前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
48 10
|
22天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
11月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
435 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
11月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
263 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
11月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
425 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)