基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

简介: 基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

文献来源:


6f10cc31279d418285fa045022edd175.png


摘要:由于近年来民用和军事领域对无人机的兴趣日益浓厚,自主微型飞行机器人的研究得到了极大的加强。本文总结了OS4项目建模和控制部分的最终成果,重点是四旋翼飞行器的设计和控制。介绍了考虑车辆运动引起的气动系数变化的仿真模型。利用该模型得到的控制参数在不重新整定的情况下成功地应用于直升机。本文的最后一部分描述了控制方法(积分反演)和我们提出的四旋翼飞行器(姿态、高度和位置)的完全控制方案。


最后给出了自主起飞、悬停、着陆和避碰的结果。


原文摘要:


Abstract— The research on autonomous miniature flying robots has intensified considerably thanks to the recent growth of civil and military interest in Unmanned Aerial Vehicles

(UAV). This paper summarizes the final results of the modeling and control parts of OS4 project, which focused on design and control of a quadrotor. It introduces a simulation model which takes into account the variation of the aerodynamical coefficients due to vehicle motion. The control parameters found with this model are successfully used on the helicopter without re-tuning. The last part of this paper describes the control approach (Integral Backstepping) and the scheme we propose for full control of quadrotors (attitude, altitude and position). Finally, the results of autonomous take-off, hover, landing and

collision avoidance are presented.


对以下内容进行了建模: - 四旋翼动力学

- 电机动力学 - 用于状态估计的卡尔曼滤波 - 简单的传感器模型/ADC转换

以下内容未建模:


- 螺旋桨动力学


- 控制规律


- 动力子系统


此SIM卡可用于:

- 系统可行性研究

- 系统性能评估和权衡

- 控制律性能评估


dd4fb3e9c7af41199ef038e12bcd5e96.png

60f1ac944a3a49e3a1b287d886621505.png


📚2 运行结果


597db406c8044ceeae96a98b2a74c287.png


055bd2982b1c487f9643addc9d1d71ce.png

4afd756db85841958183e3a562840e15.png



39946c7e08c8497c8495c876734be41f.png

6cf81f762b6d41298186a70b2acff1da.jpg


89f0dac158424b8aa4a7cea09b663a24.jpg

3aee11b5eaf6428a81b4eb96d050b439.png


58c7742b926c4de1b18e494668aaf1ab.png


部分代码:

%% simulation set up
step_time = 0.5;                       % simulation step time(sec)
end_time  = 1000;                   % simulation end time (sec)
%end_time  = 86400;
%% attitude estimator gains
Tatd  = 0.5;                          % attitude estimator update time (sec)
Tqint = 0.5;                         % discrete quaternion integration period (sec)
Tsen_out = 0.5;                      % sensor output period (sec)
TkfProp = 0.5;                       % Kalman filter propagation period (sec)
KfupdatePeriodInCycle = 1;           % Kalman filter update period (propagation cycle)
f_bw_atd = 0.02;                     % attitude determination bandwidth (hz)
%f_bw_atd = 0.005;
zeta = 0.7;
Krp =  (2*pi*f_bw_atd)^2 * eye(3);
Kpp =  2*zeta*2*pi*f_bw_atd*eye(3);
qest0 = [0*1e-4; 0; 0; 1];                          % initial estimator quaternion
delta_west0 = zeros(3,1);                           % initial deviation of estimator angular rate (rad/sec)
max_delta_w = 0.1*pi/180;
delta_w_lim = 2e-4; %0.1/pi/Tqint;
delta_th_lim= 1e-4; %0.1*pi/180/Tqint;
q0 = [0; 0; 0; 1];   
%% for estimate error standard deviation prediction calculation
wn=sqrt(diag(Krp));
k=sqrt((wn.^4+4*zeta^2)./(4*zeta*wn));
%% for using Lyapunove equation to solve for expected estimation error
C=[1 0];  K=[Kpp(1,1);Krp(1,1)];      A=[0    1;0 0]-K*C; B=K; 
H=[1 0];  K=[Kpp(1,1);Krp(1,1)]*Tatd; F=[1 Tatd;0 1]-K*H; G=K;
%% Kalman filter setups
Fmat = [eye(3) TkfProp*eye(3);zeros(3,3) eye(3)];
Hmat = [eye(3)  zeros(3,3)];
therr0 = max([abs(qest0(1:3)); 5*1e-4]);  % initial error estimate, assuming q0=[0 0 0 1]
P0 = diag([therr0^2*ones(1,3) 3e-6^2*ones(1,3)]);
R = TkfProp*KfupdatePeriodInCycle*diag(position_uncertainty_var);%1e-3^2*eye(3)*
Q = diag([1e-5^2*ones(1,3), 1e-7^2*ones(1,3)])*TkfProp;
max_rate = pi/180;
P0 = diag([1e-32*ones(1,3) 1e-5^2*ones(1,3)]);
Q = diag([1e-5^2*ones(1,3), 5e-6^2*ones(1,3)])*TkfProp;
max_bias = 1*pi/180/3600;
%% start simulation
Tcapt = Tsen_out;                              % sim variable capture rate (sec)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。



🌈4 Matlab代码实现


相关文章
|
2月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
419 5
|
2月前
|
传感器 资源调度 算法
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
138 1
|
2月前
|
机器学习/深度学习 传感器 算法
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
100 2
|
2月前
|
传感器 算法 Shell
【使用卡尔曼滤波器将陀螺仪和加速度计的读数融合,以获取IMU的姿态(四元数)】实现了所谓的“零速度更新”算法,用于行人跟踪(步态跟踪)(Matlab代码实现)
【使用卡尔曼滤波器将陀螺仪和加速度计的读数融合,以获取IMU的姿态(四元数)】实现了所谓的“零速度更新”算法,用于行人跟踪(步态跟踪)(Matlab代码实现)
128 8
|
2月前
|
机器学习/深度学习 存储 算法
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
248 0
|
2月前
|
传感器 资源调度 算法
【数据融合】【状态估计】基于KF、UKF、EKF、PF、FKF、DKF卡尔曼滤波KF、无迹卡尔曼滤波UKF、拓展卡尔曼滤波数据融合研究(Matlab代码实现)
【数据融合】【状态估计】基于KF、UKF、EKF、PF、FKF、DKF卡尔曼滤波KF、无迹卡尔曼滤波UKF、拓展卡尔曼滤波数据融合研究(Matlab代码实现)
258 0
|
2月前
|
机器学习/深度学习 数据采集 传感器
考虑时空相关性的风电功率预测误差建模与分析(Matlab代码实现)
考虑时空相关性的风电功率预测误差建模与分析(Matlab代码实现)
|
2月前
|
传感器 算法 自动驾驶
【卡尔曼滤波跟踪】基于卡尔曼滤波的二维目标跟踪(Matlab实现)
【卡尔曼滤波跟踪】基于卡尔曼滤波的二维目标跟踪(Matlab实现)
139 0
|
23天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
142 0
|
23天前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)

热门文章

最新文章