基于卡尔曼滤波的系统参数辨识matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 此程序采用卡尔曼滤波技术实现系统参数在线辨识,通过MATLAB 2022a仿真展现参数收敛过程、辨识误差,并比较不同信噪比下系统性能。卡尔曼滤波递归地结合历史估计与当前观测,优化状态估计。参数辨识中,系统参数被视为状态变量,通过迭代预测和更新步骤实现在线估计,有效处理了线性系统中的噪声影响。

1.程序功能描述
通过kalman滤波的方法,对系统的参数进行辨识,整个程序仿真输出参数辨识的收敛过程,参数辨识误差,参数辨识之后系统的输出和真实的系统输出误差,最后设置不同的信噪比,对比不同干扰下的系统参数辨识误差。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

```for i=1:Mc
for i=3:n-2
Xkp=FX0; % 计算状态的一步预测值
P=F
P0F'+GQG'; % 计算一步预测误差协方差
h=[-z(i-1) -z(i-2) M(i-1) M(i-2)]';% 计算观测矩阵h
K=P
h/(h'Ph+1); % 计算Kalman增益K
Xk(:,i)=Xkp+K(z(i)-h'Xkp);% 更新状态估计值Xk
Pk=(eye(4)-Kh')P; % 更新估计误差协方差Pk
P0=Pk;% 更新估计误差协方差的初值P0为Pk
X0=Xk(:,i);% 更新状态估计的初值X0为Xk(:,i)
D(:,i)=(X-Xk(:,i)).^2;% 计算估计误差并保存到D中
end
end
figure
plot(Xk(1,:))
hold on
plot(Xk(2,:))
hold on
plot(Xk(3,:))
hold on
plot(Xk(4,:))
title('参数的辨识过程')
grid on
legend('a1','a2','b1','b2');

figure
subplot(221);
plot(Xk(1,:),'r','linewidth',2)
hold on
plot(Ra1ones(size(Xk(1,:))),'b')
title('a1参数的变化过程')
grid on
subplot(222);
plot(Xk(2,:),'r','linewidth',2)
hold on
plot(Ra2
ones(size(Xk(1,:))),'b')
title('a2参数的变化过程')
grid on
subplot(223);
plot(Xk(3,:),'r','linewidth',2)
hold on
plot(Ra3ones(size(Xk(1,:))),'b')
title('b1参数的变化过程')
grid on
subplot(224);
plot(Xk(4,:),'r','linewidth',2)
hold on
plot(Ra4
ones(size(Xk(1,:))),'b')
title('b2参数的变化过程')
grid on

figure
plot(D(1,50:end))
hold on
plot(D(2,50:end))
hold on
plot(D(3,50:end))
hold on
plot(D(4,50:end))
hold on
title('估计误差的变化过程')

a1=Xk(1,end);
a2=Xk(2,end);
a3=Xk(3,end);
a4=Xk(4,end);
% 初始值设定
z2(1)=-1;
z2(2)=0;
%根据系统传递函数表达式
for i=3:n-1
z2(i)=-a1z2(i-1)-a2z2(i-2)+a3M(i-1)+a4M(i-2)+v(i-2);
end

figure;
subplot(211);
plot(z)
hold on
plot(z2)
legend('系统输出','参数辨识系统输出');

subplot(212);
plot(z-z2')
legend('参数辨识系统误差');
0008

```

4.本算法原理
卡尔曼滤波是一种广泛应用于信号处理、控制系统和数据融合等领域的高效递归滤波算法。它的主要优点是只需要利用前一时刻的估计值和当前时刻的观测值,就可以递推地计算出当前时刻的状态估计值。这使得卡尔曼滤波非常适合于实时系统和在线应用。

4.1、卡尔曼滤波的基本原理
卡尔曼滤波是一种线性、递归和最小均方误差的估计算法,它适用于线性动态系统和加性白噪声环境。卡尔曼滤波的基本方程包括状态预测方程和状态更新方程:

状态预测方程:
X(k|k-1) = A X(k-1|k-1) + B U(k) (1)

状态更新方程:
X(k|k) = X(k|k-1) + K(k) [Z(k) - H X(k|k-1)] (2)

   其中,X(k|k-1) 是根据上一时刻状态预测的本时刻状态,X(k|k) 是根据本时刻观测值更新后的状态估计,A 是状态转移矩阵,B 是控制输入矩阵,U(k) 是控制输入,Z(k) 是本时刻的观测值,H 是观测矩阵,K(k) 是卡尔曼增益。
AI 代码解读

4.2、基于卡尔曼滤波的系统参数辨识
系统参数辨识是确定系统模型参数的过程,这些参数可以描述系统的动态行为。卡尔曼滤波可以用于在线辨识系统的参数,其基本思想是将系统的参数作为状态变量,然后利用卡尔曼滤波算法进行估计。

假设我们有一个线性系统,其状态方程和观测方程可以表示为:

状态方程:

x(k+1) = Ax(k) + Bu(k) + w(k) (3)

观测方程:

y(k) = Cx(k) + Du(k) + v(k) (4)

    其中,x(k) 是状态向量,u(k) 是输入向量,y(k) 是输出向量,w(k) 和 v(k) 分别是过程噪声和观测噪声,它们被假设为零均值的高斯白噪声。AB、C 和 D 是系统的参数矩阵。

   我们可以将系统的参数矩阵作为状态变量,然后应用卡尔曼滤波算法进行估计。令系统的参数向量为 θ,则状态方程和观测方程可以改写为:
AI 代码解读

状态方程:

θ(k+1) = θ(k) + w(k) (5)

观测方程:

y(k) = X(k)θ(k) + v(k) (6)

   其中,X(k) 是由输入向量 u(k) 和状态向量 x(k) 构成的回归矩阵。这样,我们就可以利用卡尔曼滤波算法对参数向量 θ 进行在线估计。具体步骤如下:
AI 代码解读

初始化:给定初始状态估计值 θ(0|0) 和初始估计误差协方差 P(0|0)。
预测:利用状态预测方程(5)预测下一时刻的状态 θ(k+1|k)。同时,利用预测误差协方差方程预测下一时刻的估计误差协方差 P(k+1|k)。
更新:当新的观测值 y(k+1) 到达时,利用状态更新方程(2)更新状态估计值 θ(k+1|k+1)。同时,利用更新误差协方差方程更新估计误差协方差 P(k+1|k+1)。
迭代:返回步骤2,进行下一时刻的预测和更新。

目录
打赏
0
9
12
2
206
分享
相关文章
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
6月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
273 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
140 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)