✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
基于BP神经网络的时间序列预测是一种常用的预测方法,它可以通过训练神经网络模型来学习时间序列数据的内在模式和趋势,并用于未来的预测。
下面是基于BP神经网络的时间序列预测的基本步骤:
- 数据准备:将时间序列数据按照一定的时间窗口进行切分,形成输入和输出的训练样本。例如,将前n个时间步的数据作为输入,第n+1个时间步的数据作为输出。
- 网络设计:选择BP神经网络的结构,包括输入层、隐藏层和输出层的节点数。隐藏层的节点数和层数可以根据问题的复杂性进行调整。
- 初始化权重和偏置:随机初始化神经网络中的权重和偏置参数。
- 前向传播:将输入样本输入到神经网络中,通过前向传播计算每个节点的输出值。
- 计算误差:将神经网络的输出值与实际输出值进行比较,计算误差值。
- 反向传播:根据误差值,使用反向传播算法调整神经网络中的权重和偏置,以减小误差。
- 更新参数:通过梯度下降等优化算法,更新神经网络中的权重和偏置参数。
- 重复训练:重复进行步骤4-7,直到达到预设的训练次数或达到某个停止准则(如误差小于某个阈值)。
- 预测未来值:使用训练好的神经网络模型,输入未来的时间步,通过前向传播计算得到预测值。
需要注意的是,基于BP神经网络的时间序列预测方法在应用中也存在一些挑战,如训练样本的选择、网络结构的确定、过拟合等问题,需要根据具体情况进行调整和改进。此外,多变量时间序列预测可以将多个相关变量作为输入,从而提高预测精度。
⛄ 代码
%% 清空环境变量warning off % 关闭报警信息close all % 关闭开启的图窗clear % 清空变量clc % 清空命令行%% 导入数据(时间序列的单列数据)result = xlsread('数据集.xlsx');%% 数据分析num_samples = length(result); % 样本个数 kim = 15; % 延时步长(kim个历史数据作为自变量)zim = 1; % 跨zim个时间点进行预测%% 构造数据集for i = 1: num_samples - kim - zim + 1 res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];end%% 划分训练集和测试集temp = 1: 1: 922;P_train = res(temp(1: 700), 1: 15)';T_train = res(temp(1: 700), 16)';M = size(P_train, 2);P_test = res(temp(701: end), 1: 15)';T_test = res(temp(701: end), 16)';N = size(P_test, 2);%% 数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%% 创建网络net = newff(p_train, t_train, 5);%% 设置训练参数net.trainParam.epochs = 1000; % 迭代次数 net.trainParam.goal = 1e-6; % 误差阈值net.trainParam.lr = 0.01; % 学习率%% 训练网络net= train(net, p_train, t_train);%% 仿真测试t_sim1 = sim(net, p_train);t_sim2 = sim(net, p_test);%% 数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 绘图figureplot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {strcat('训练集预测结果对比:', ['RMSE=' num2str(error1)])};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {strcat('测试集预测结果对比:', ['RMSE=' num2str(error2)])};title(string)xlim([1, N])grid%% 相关指标计算% R2R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1 - T_train)) ./ M ;mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1 - T_train) ./ M ;mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%% 绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')
⛄ 运行结果
⛄ 参考文献
[1] 刘天,姚梦雷,黄继贵,等.BP神经网络在传染病时间序列预测中的应用及其MATLAB实现[J].预防医学情报杂志, 2019, 35(8):6.DOI:CNKI:SUN:YFYX.0.2019-08-006.
[2] 刘莉,贺聪.基于时间序列的BP神经网络的滑坡预测预报及其在Matlab中的实现[J].中国水运:理论版, 2006(12):72-74.DOI:CNKI:SUN:ZYUN.0.2006-12-031.