m基于GA遗传优化算法的三维室内红外传感器部署策略matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化算法的三维室内红外传感器部署策略matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
93453b956641043ed1a4b70b97dfe2be_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3979db2c49d11379ece4bff506be7684_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
30c586885f54fad28163193c013b07d0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
769ac0bc4888abf4a38d2562eb178a5e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
随着智能家居和自动化建筑的不断发展,红外传感器在室内环境监测、安防、智能控制等领域中得到了广泛应用。在室内部署红外传感器时,其位置的选择对于传感器的性能和信号质量有着至关重要的影响。因此,如何确定红外传感器的最佳部署位置成为了一个热门的研究课题。

一、研究背景

    红外传感器是一种广泛应用于室内环境监测、安防、智能控制等领域的传感器。在实际应用中,红外传感器的位置选择对于传感器的性能和信号质量有着至关重要的影响。因此,如何确定红外传感器的最佳部署位置成为了一个热门的研究课题。

    传统的红外传感器部署方法主要是基于经验和试错的方式进行的。这种方法存在着许多问题,如需要大量的时间和人力成本、无法保证部署的最优性、无法考虑到不同环境、不同传感器的影响等。因此,如何利用现代优化算法对红外传感器的部署位置进行优化是当前研究的热点之一。

二、GA遗传优化算法

    GA遗传优化算法是一种基于生物进化原理的优化算法。它通过模拟自然界的进化过程,从解空间中搜索最优解。其基本思想是将待优化问题的解表示为一组遗传码,然后通过遗传操作(选择、交叉、变异)对遗传码进行操作,从而不断地进化出更优秀的解。

GA遗传优化算法包括以下几个步骤:

初始化种群:随机生成一组初始种群,每个个体对应一个问题的解。

适应度函数:对于每个个体,计算其适应度值。适应度值越大,代表该个体越优秀。

选择操作:根据适应度值,选择优秀的个体作为父代,进一步繁殖下一代个体。

交叉操作:将父代个体的基因组合起来,生成新的个体。

变异操作:对新的个体进行随机变异,引入一定的随机性,避免陷入局部最优。

终止条件:达到预定的终止条件后,输出最优解。

三、基于GA优化的三维室内红外传感器部署策略

    为了解决红外传感器部署的优化问题,本文提出了一种基于GA遗传优化算法的三维室内红外传感器部署策略。该策略的主要流程如下:

   建立室内三维模型:首先,需要建立室内的三维模型,包括房间的大小、布局、墙壁、家具等信息。可以使用三维建模软件进行建模,也可以使用3D扫描仪进行实时扫描。

   确定传感器数量和类型:根据实际需求,确定需要部署的红外传感器数量和类型。

   初始化种群:将室内空间划分为若干个区域,并随机生成一组初始种群,每个个体对应一个传感器的部署方案,即每个个体表示了所有传感器的位置和朝向。

   适应度函数:对于每个个体,计算其适应度值。适应度值的计算需要考虑到以下几个方面:

   覆盖率:传感器部署方案需要覆盖室内空间的尽可能多的区域,以保证传感器能够检测到所有的目标。
   重叠度:传感器部署方案需要避免传感器之间的重叠,以避免重复检测。
   捕获率:传感器部署方案需要尽可能地提高目标的捕获率,即检测到目标的概率。
   选择操作:根据适应度值,选择优秀的个体作为父代,进一步繁殖下一代个体。本文采用了轮盘赌选择算法进行选择操作。

   交叉操作:将父代个体的基因组合起来,生成新的个体。本文采用了单点交叉算法进行交叉操作。

   变异操作:对新的个体进行随机变异,引入一定的随机性,避免陷入局部最优。本文采用了随机变异算法进行变异操作。

   终止条件:达到预定的终止条件后,输出最优解。本文采用了迭代次数作为终止条件。

3.MATLAB核心程序

X1 = XYZ1(1,:);
Y1 = XYZ1(2,:);
Z1 = XYZ1(3,:);

%避开障碍物
Idx1 = [];
for i=1:Nr1
    for j = 1:length(X1)
        %判断传感器的坐标点区域和传感器是否有交集,有交集那么说明碰到障碍物了,则去除这些错误的部署点
        if abs(X1(j)-(X3(i)+L(i)/2))<=L(i)/2 & abs(Y1(j)-(Y3(i)+W(i)/2))<=W(i)/2 & abs(Z1(j)-(Z3(i)+H(i)/2))<=H(i)/2
           Idx1 = [Idx1,j]; 
        end
    end
end

idx2 = unique(Idx1);
X1(idx2) = [];
Y1(idx2) = [];
Z1(idx2) = [];
NUM1_new = NUM1-length(find(idx2<=NUM1));
NUM2_new = length(X1)-NUM1_new;
Idx1 = [];
for i=1:Nr2
    for j = 1:length(X1)
        %判断传感器的坐标点区域和传感器是否有交集,有交集那么说明碰到障碍物了,则去除这些错误的部署点
        if ((X1(j) - X4(i))^2 + (Y1(j) - Y4(i))^2 + (Z1(j) - Z4(i))^2) <= R4(i)^2 
           Idx1 = [Idx1,j]; 
        end
    end
end

idx2 = unique(Idx1);
X1(idx2) = [];
Y1(idx2) = [];
Z1(idx2) = [];
NUM1_new = NUM1-length(find(idx2<=NUM1));
NUM2_new = length(X1)-NUM1_new;

%上面两个步骤,去掉了和障碍物有重叠的部署位置
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%第一个,覆盖率
Sar=0;
for i = 1:SCALE
    for j = 1:SCALE
        for kk = 1:SCALE
            Nums = 0;
            for k = 1:(NUM1_new+NUM2_new)
                if k<=NUM1_new%类似半个无顶的球体覆盖率计算,那么Z轴的取值范围,这里只考虑90旋转或者180旋转,任意角度情况不考虑,否则非常复杂
                if ((X1(k) - i)^2 + (Y1(k) - j)^2 + (Z1(k) - kk)^2) < Rad1^2 & (abs(Z1(k)-kk)<=Rad1*sin(Dgree))%30度的弧形  
                   Nums=Nums+1;
                end
                end
                if k>NUM1_new & k<=(NUM1_new+NUM2_new)%正方形覆盖率计算
                if abs(X1(k) - i)<=Rad2 &  abs(Y1(k) - j)<=Rad2 & abs(Z1(k) - kk)<=Rad2  
                   Nums=Nums+1;
                end
                end
            end
            if Nums > 0
               Sar=Sar+1; 
            end
        end
    end
end
fobj1 = 1-Sar/SCALE/SCALE/SCALE;%整体减去被覆盖到的点,就是非覆盖率,因为优化算法是往最小值找的,所以需要减去覆盖率,得到非覆盖率,越小越好

%第二个安装难度,这里做一个定义,和障碍物越近,那么难度越大因为涉及到信号的传输和障碍物的避让问题
fobj2_= [];
for i=1:(NUM1_new+NUM2_new)
    if i<=NUM1_new
        d1=[];
        d2=[];
        for j=1:Nr1
            tmps = sqrt((X1(i) - X3(j))^2 + (Y1(i) - Y3(j))^2)+ (Z1(i) - Z3(j))^2; %计算距离
            if tmps  < Rad1%满足条件的则保持到d1数据库
               d1=[d1,1/(tmps+1)]; 
            end
        end
        for j=1:Nr2
            tmps = sqrt((X1(i) - X4(j))^2 + (Y1(i) - Y4(j))^2 + (Z1(i) - Z4(j))^2); %计算距离
            if tmps  < Rad1%满足条件的则保持到d2数据库
               d2=[d2,1/(tmps+1)]; 
            end
        end
        if isempty([d1,d2])==1
           fobj2_(i)=0; 
        else
           fobj2_(i)=mean([d1,d2]); 
        end
    end
    if i>NUM1_new
        d1=[];
        d2=[];
        for j=1:Nr1
            tmps = sqrt((X1(i) - X3(j))^2 + (Y1(i) - Y3(j))^2 + (Z1(i) - Z3(j))^2); %计算距离
            if tmps  < Rad2%满足条件的则保持到d1数据库
               d1=[d1,1/(tmps+1)]; 
            end
        end
        for j=1:Nr2
            tmps = sqrt((X1(i) - X4(j))^2 + (Y1(i) - Y4(j))^2 + (Z1(i) - Z4(j))^2); %计算距离
            if tmps  < Rad2%满足条件的则保持到d2数据库
               d2=[d2,1/(tmps+1)]; 
            end
        end
        if isempty([d1,d2])==1
           fobj2_(i)=0; 
        else
           fobj2_(i)=mean([d1,d2]); 
        end
    end
end
相关文章
|
5天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
5天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
4天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
3天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
18天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
153 80
|
6天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
11天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
14天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章