【Matlab智能算法】极限学习机-遗传算法(ELM-GA)函数极值寻优——非线性函数求极值

简介: 【Matlab智能算法】极限学习机-遗传算法(ELM-GA)函数极值寻优——非线性函数求极值


1.背景条件

要求:对于未知模型(函数表达式未知)求解极值。

条件:已知模型的一些输入输出数据。

程序的示例是根据用神经网络遗传算法寻优非线性函数 y = x 1 2 + x 2 2 y = x_1^2+x_2^2y=x12+x22 的极值,输入参数有2个,输出参数有1个,易知函数有极小值0,极小值点为(0, 0)。已知的只有一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end

2.完整代码

data.m

用于生成神经网络拟合的原始数据。

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';
save data input output

ELM.m

用函数输入输出数据训练ELM,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用于计算个体适应度值。根据非线性函数方程随机得到该函数的4000组输入输出数据,存储于data中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

%% 清空环境变量
clc
tic
%% 训练数据预测数据提取及归一化
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);
%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
[inputn_train,inputps]=mapminmax(input_train,-1,1);
[outputn_train,outputps]=mapminmax(output_train,-1,1);
inputn_test = mapminmax('apply',input_test,inputps);
outputn_test = mapminmax('apply',output_test,outputps);
%% ELM创建/训练
[IW,B,LW,TF,TYPE] = elmtrain(inputn_train,outputn_train,20,'sig',0);
%% ELM仿真测试
outputn_ELM = elmpredict(inputn_test,IW,B,LW,TF,TYPE);
output_ELM = mapminmax('reverse',outputn_ELM,outputps);
%% 结果分析
error=output_test-output_ELM;
errorsum=sum(abs(error))
figure(1);
plot(output_ELM,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10);
title('ELM predictive output','fontsize',12);
xlabel("samples",'fontsize',12);
figure(2);
plot(error,'-*');
title('ELM  prediction error');
xlabel("samples",'fontsize',12);
figure(3);
plot(100*(output_test-output_ELM)./output_test,'-*');
title('ELM  prediction error percentage (%)');
xlabel("samples",'fontsize',12);
toc
save data inputps outputps
save net IW B LW TF TYPE

elmtrain.m

ELM训练函数。

function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% T   - Output Matrix of Training Set (S*Q)
% N   - Number of Hidden Neurons (default = Q)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
% Output
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
% Yu Lei,11-7-2010
% Copyright www.matlabsky.com
% $Revision:1.0 $
if nargin < 2
    error('ELM:Arguments','Not enough input arguments.');
end
if nargin < 3
    N = size(P,2);
end
if nargin < 4
    TF = 'sig';
end
if nargin < 5
    TYPE = 0;
end
if size(P,2) ~= size(T,2)
    error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE  == 1
    T  = ind2vec(T);
end
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
switch TF
    case 'sig'
        H = 1 ./ (1 + exp(-tempH));
    case 'sin'
        H = sin(tempH);
    case 'hardlim'
        H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';

elmpredict.m

ELM预测函数。

function Y = elmpredict(P,IW,B,LW,TF,TYPE)
% ELMPREDICT Simulate a Extreme Learning Machine
% Syntax
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
% Output
% Y   - Simulate Output Matrix (S*Q)
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMTRAIN
% Yu Lei,11-7-2010
% Copyright www.matlabsky.com
% $Revision:1.0 $
if nargin < 6
    error('ELM:Arguments','Not enough input arguments.');
end
% Calculate the Layer Output Matrix H
Q = size(P,2);
BiasMatrix = repmat(B,1,Q);
tempH = IW * P + BiasMatrix;
switch TF
    case 'sig'
        H = 1 ./ (1 + exp(-tempH));
    case 'sin'
        H = sin(tempH);
    case 'hardlim'
        H = hardlim(tempH);
end
% Calculate the Simulate Output
Y = (H' * LW)';
if TYPE == 1
    temp_Y = zeros(size(Y));
    for i = 1:size(Y,2)
        [max_Y,index] = max(Y(:,i));
        temp_Y(index,i) = 1;
    end
    Y = vec2ind(temp_Y); 
end

Code.m

编码成染色体。

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值
flag=0;
while flag==0
    pick=rand(1,length(lenchrom));
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
    flag=test(lenchrom,bound,ret);     %检验染色体的可行性
end

fun.m

把训练好的ELM预测输出作为个体适应度值。

function fitness = fun(x)
% 函数功能:计算该个体对应适应度值
% x           input     个体
% fitness     output    个体适应度值
load data inputps outputps
load net IW B LW TF TYPE
%数据归一化
x=x';
inputn_test=mapminmax('apply',x,inputps);
%网络预测输出
outputn_ELM = elmpredict(inputn_test,IW,B,LW,TF,TYPE);
%网络输出反归一化
fitness=mapminmax('reverse',outputn_ELM,outputps);

对于求极小值的函数,适应度可以设为ELM预测结果,如果需要求极大值,可以对适应度取反。

Select.m

选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群。

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群
fitness1=1./individuals.fitness;
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0    
        pick=rand;        
    end
    for i=1:sizepop    
        pick=pick-sumf(i);        
        if pick<0        
            index=[index i];            
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

Cross.m

交叉操作从种群中选择两个个体,按一定概率交叉得到新个体。

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
 for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
     % 随机选择两个染色体进行交叉
     pick=rand(1,2);
     while prod(pick)==0
         pick=rand(1,2);
     end
     index=ceil(pick.*sizepop);
     % 交叉概率决定是否进行交叉
     pick=rand;
     while pick==0
         pick=rand;
     end
     if pick>pcross
         continue;
     end
     flag=0;
     while flag==0
         % 随机选择交叉位
         pick=rand;
         while pick==0
             pick=rand;
         end
         pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
         pick=rand; %交叉开始
         v1=chrom(index(1),pos);
         v2=chrom(index(2),pos);
         chrom(index(1),pos)=pick*v2+(1-pick)*v1;
         chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
         flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
         flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
         if   flag1*flag2==0
             flag=0;
         else flag=1;
         end    %如果两个染色体不是都可行,则重新交叉
     end
 end
ret=chrom;

test.m

检验染色体的可行性。

function flag=test(lenchrom,bound,code)
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% code       output: 染色体的编码值
x=code; %先解码
flag=1;
if (x(1)<bound(1,1))&&(x(2)<bound(2,1))&&(x(1)>bound(1,2))&&(x(2)>bound(2,2))
    flag=0;
end

Mutation.m

变异操作从种群中随机选择一个个体,按一定概率变异得到新个体。

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体
for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
    %但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0      
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
        v=chrom(i,pos);        
        v1=v-bound(pos,1);        
        v2=bound(pos,2)-v;        
        pick=rand; %变异开始        
        if pick>0.5
            delta=v2*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v+delta;
        else
            delta=v1*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v-delta;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;

Genetic.m

%% 清空环境变量
clc
% clear
%% 初始化遗传算法参数
%初始化参数
maxgen=100;                         %进化代数,即迭代次数
sizepop=20;                        %种群规模
pcross=[0.4];                       %交叉概率选择,0和1之间
pmutation=[0.2];                    %变异概率选择,0和1之间
lenchrom=[1 1];          %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5];  %数据范围
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体
%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
    %随机产生一个种群
    individuals.chrom(i,:)=Code(lenchrom,bound);   
    x=individuals.chrom(i,:);
    %计算适应度
    individuals.fitness(i)=fun(x);   %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; 
%% 迭代寻优
% 进化开始
for i=1:maxgen
    i
    % 选择
    individuals=Select(individuals,sizepop); 
    avgfitness=sum(individuals.fitness)/sizepop;
    % 交叉
    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
    % 变异
    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);
    % 计算适应度 
    for j=1:sizepop
        x=individuals.chrom(j,:); %解码
        individuals.fitness(j)=fun(x);   
    end
  %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    [worestfitness,worestindex]=max(individuals.fitness);
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
    end
    individuals.chrom(worestindex,:)=bestchrom;
    individuals.fitness(worestindex)=bestfitness;
    avgfitness=sum(individuals.fitness)/sizepop;
    trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
disp('适应度                   变量');
x=bestchrom;
xlim([0, 100]);
% 窗口显示
disp([bestfitness x]);

3.代码使用说明

上述代码运行顺序

data.m 生成数据(如果已有 input output 数据可跳过),

ELM.m 进行ELM训练及函数拟合,

Genetic.m(主函数)利用遗传算法求极值。

求最大值的方法

上述代码用于求解最小值,对于求解最大值的需求,可以在适应度函数里面,对适应度计算结果求反,把求解最大值的问题转化为求解最小值的问题。

例如:对于非线性函数 y = − ( x 1 2 + x 2 2 ) + 4 y = -(x_1^2+x_2^2)+4y=(x12+x22)+4

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=-(input(i,1)^2+input(i,2)^2)+4;
end

求最大值时,需要在 fun.m 里面,修改最后一行代码:

fitness=-mapminmax('reverse',an,outputps);

注意:每次运行结果不尽相同。

4.代码运行结果

y = x 1 2 + x 2 2 y = x_1^2+x_2^2y=x12+x22 求极小值

ELM神经网络拟合

运行ELM.m之后:

输出:

errorsum =
    1.0758
历时 0.169951 秒。

注意:每次运行结果不尽相同。

遗传算法寻优

运行主函数 Genetic.m之后:

输出:

...
i =
   100
适应度                   变量
    0.0142   -0.0038   -0.0103

最终结果最优个体为(-0.0038,-0.0103),适应度为 0.0142。

注意:每次运行结果不尽相同。

资源下载

下载链接

参考

《MATLAB神经网络43个案例分析》

相关文章
|
29天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到&quot;hand.txt&quot;文件。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
6天前
|
文字识别 算法 计算机视觉
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
13 0
|
9天前
|
机器学习/深度学习 算法
【MATLAB】GA_ELM神经网络时序预测算法
【MATLAB】GA_ELM神经网络时序预测算法
280 9
|
21天前
雷达模糊函数及MATLAB仿真(三)
雷达模糊函数及MATLAB仿真
15 0
|
21天前
雷达模糊函数及MATLAB仿真(一)
雷达模糊函数及MATLAB仿真
25 0
|
28天前
|
算法
m基于log-MPA检测算法的SCMA通信链路matlab误码率仿真
MATLAB 2022a仿真实现了稀疏码多址接入(SCMA)算法,该算法利用码本稀疏性实现多用户高效接入。每个用户从码本中选取码字发送,接收端采用Log-MPA算法进行多用户检测。由于MAP检测计算复杂度高,故采用Log-MPA降低复杂性。仿真展示了不同迭代次数(1, 5, 10, 30)对误码率(BER)的影响,通过比较各次迭代的BER曲线,研究算法性能与迭代次数的关系。
18 0
|
30天前
|
算法 搜索推荐
基于遗传优化的协同过滤推荐算法matlab仿真
该内容是关于推荐系统和算法的描述。使用Matlab2022a执行的算法生成了推荐商品ID列表,显示了协同过滤在个性化推荐中的应用。用户兴趣模型通过获取用户信息并建立数学模型来提高推荐性能。程序片段展示了遗传算法(GA)的迭代过程,确定支持度阈值,并基于关联规则生成推荐商品ID。最终结果是推荐的商品ID列表,显示了算法的收敛和支持值。
|
30天前
|
机器学习/深度学习 算法
m基于深度学习的64QAM调制解调系统相位检测和补偿算法matlab仿真
MATLAB 2022a仿真实现了基于深度学习的64QAM相位检测和补偿算法,有效应对通信中相位失真问题。通过DNN进行相位检测和补偿,降低解调错误。核心程序生成随机信号,模拟AWGN信道,比较了有无相位补偿的误码率,结果显示补偿能显著提升性能。
26 8
|
1月前
|
机器学习/深度学习 算法 生物认证
基于深度学习的人员指纹身份识别算法matlab仿真
这是一个关于使用深度学习进行指纹识别的算法概述。在matlab2022a环境下,通过预处理指纹图像(灰度化、二值化等)并利用卷积神经网络(CNN)提取特征。CNN架构包含卷积、池化、归一化和全连接层。特征向量通过余弦相似度计算匹配,训练时采用triplet loss优化。部分核心代码展示了加载预训练模型进行测试集分类预测并计算准确率的过程。

热门文章

最新文章