【无功优化】基于粒子群算法实现配电网无功优化附matlab代码

简介: 【无功优化】基于粒子群算法实现配电网无功优化附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

当今社会已步入飞速发展时代,能源作为国家战略性资源受到了重点关注.传统能源的使用不但会对破坏当前的生态环境,而其本身也面临枯竭风险.电力系统无功功率潮流优化就是合理调配电网中的无功功率,使其在电能质量,经济效益,节能高效之间找寻平衡.无功功率合理的分布不但能提升系统的电压水平,而且可以使网损得到相应的减少,使电网的运行质量及稳定性也会变得更好.因此配电网优化无功功率配置问题的研究显得意义非凡.无功优化是一个约束条件多,变量多并且维度高的优化问题,以往经典的优化算法都因为自身结构的问题存在着一些不足,但是随着近年来人工智能算法的出现,情况得到了改善.粒子群算法是一种性能较为良好的随机搜索算法,其收敛性好,求解精度较高,已成功地应用于求解各种复杂的优化问题.本文基于粒子群算法对无功补偿容量进行调整,得到一组最优无功补偿装置容量,将装置投入IEEE33节点得到优化后的节点电压和系统网损,可验证粒子群算法在配电网中无功优化的可行性。

⛄ 部分代码

clear;

Max_Dt=50;%最大迭代次数300

D=3;%搜索空间维数(未知数个数)

N=50;%粒子个数600

w_max=0.9;

w_min=0.4;

v_max=2;


Qcmax=0.1;Qcmin=0;

s=1;

n=33 ;      

n1=32;

isb=1;

H=32;

count=zeros(24,33);

pg=zeros(72);


global B1;

global B2;


global pg;

B1=[1 2 0.00922 0.0047i 1 0;

   2 3 0.00493 0.02511i 1 0;

   3 4 0.0366 0.01864i 1 0;

   4 5 0.03811 0.01941i 1 0;

   5 6 0.0819 0.0707i 1 0;

   6 7 0.01872 0.06188i 1 0;

   7 8 0.07114 0.02351i 1 0;

   8 9 0.103 0.074i 1 0;

   9 10 0.1044 0.074i 1 0;

   10 11 0.01966 0.0065i 1 0;

   11 12 0.03744 0.01238i 1 0;

   12 13 0.1468 0.1155i 1 0;

   13 14 0.05416 0.07129i 1 0;

   14 15 0.05910 0.0526i 1 0;

   15 16 0.07463 0.05450i 1 0;

   16 17 0.1289 0.1721i 1 0;

   17 18 0.0732 0.0574i 1 0;

   2 19 0.0164 0.01565i 1 0;

   19 20 0.15042 0.13554i 1 0;

   20 21 0.04095 0.04784i 1 0;

   21 22 0.07089 0.09373i 1 0;

   3 23 0.04512 0.03083i 1 0;

   23 24 0.08980 0.07091i 1 0;

   24 25 0.08960 0.07011i 1 0;

   6 26 0.0203 0.01034i 1 0;

   26 27 0.02842 0.01447i 1 0;

   27 28 0.1059 0.09337i 1 0;

   28 29 0.08042 0.07006i 1 0;

   29 30 0.05075 0.02585i 1 0;

   30 31 0.09744 0.0963i 1 0;

   31 32 0.03105 0.03619i 1 0;

   32 33 0.03410 0.05302i 1 0];

B2=[1 0 0 0 1.05 0;

   2 1 -0.01 -0.006 1 0;

   3 1 -0.009 -0.004 1 0;

   4 1 -0.012 -0.008 1 0;

   5 1 -0.006 -0.003 1 0;

   6 1 -0.006 -0.002 1 0;


end

 

   figure(1);

plot(uu);

title('目标函数迭代收敛图');

xlabel('迭代次数');

ylabel('目标函数大小');

grid on ;

⛄ 运行结果

⛄ 参考文献

[1] 董家读,黄彦全,李磊,等.基于混沌粒子群算法的配电网无功优化[J].电气应用, 2009, 28(012):62-65.DOI:10.3969/j.issn.1672-9560.2009.12.014.

[2] 王希.基于动态云进化粒子群算法的含风电场配电网无功优化[D].上海交通大学[2023-06-08].

[3] 董家读,黄彦全,李磊,等.基于混沌粒子群算法的配电网无功优化[J].电气应用, 2009(12):4.DOI:JournalArticle/5af37482c095d718d80c8b1c.

[4] 张尚然.基于改进粒子群算法的配电网无功优化研究[J].承德石油高等专科学校学报, 2022, 24(5):64-66.

[5] 姚建红,王中爽,金淼鑫,等.基于改进粒子群算法的配电网无功优化的研究[J].  2011.DOI:10.3969/j.issn.1008-1402.2011.06.015.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
364 0
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
199 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
214 8
|
3月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
165 0
|
3月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
137 0
|
3月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
144 0
|
3月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
215 8
|
3月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
119 8
|
3月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
198 12
|
3月前
|
人工智能 数据可视化 网络性能优化
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
156 9

热门文章

最新文章