m基于深度学习的64QAM调制解调系统频偏估计和补偿算法matlab仿真

简介: ### 算法仿真结果展示5张图像,描绘了基于深度学习的频偏估计和补偿在MATLAB 2022a中的仿真效果。### 理论概要- 深度学习算法用于建立信号与频偏的非线性映射,无需导频,节省资源。- 网络模型(如CNN或RNN)处理IQ数据,提取特征,简化估计补偿过程,降低复杂度。- 64QAM系统中,通过神经网络实现精确频偏感知,增强通信性能。### MATLAB核心程序- 代码生成64QAM信号,模拟不同SNR和频偏条件,使用深度学习进行相位估计和补偿。- 仿真比较了有无补偿的误码率,显示补偿能显著改善通信质量。```

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要

ba14d8da4098f1bbba17271da340a4b7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 基于深度学习的频偏估计和补偿算法
基于深度学习的频偏估计和补偿算法利用深度神经网络来建立接收信号与频偏之间的非线性映射关系,通过训练网络模型来实现频偏的估计和补偿。相比传统方法,该算法具有以下优点:

(1) 不需要导频,节省了频带资源;

(2) 通过训练数据来学习频偏与接收信号之间的复杂关系,具有更强的建模能力和适应性;

(3) 估计补偿过程简单,计算复杂度低,易于硬件实现。

该算法如下:

   特征提取: 利用卷积神经网络(CNN)或循环神经网络(RNN)对IQ数据进行特征提取。例如,输入经过滑动窗口处理后的IQ采样序列[r1​(t),r2​(t),...,rN​(t)],通过多层非线性变换生成高维特征向量。

c8090094baeb51258a22ca5e71205a7f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    基于深度学习的64QAM调制解调系统的频偏估计和补偿算法主要通过构建并训练神经网络模型来实现精确的频偏感知,并结合传统的数字信号处理技术完成补偿,从而提高通信链路的整体性能。

3.MATLAB核心程序
```K = 6; %调制阶数
SNR = [0:2:30]; %信噪比范围0~30
OFFSET = 6;%频偏范围0~10Hz
LEN = 6000;
Fs = 1e4;
t = [1:LEN/K]/Fs;

for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1.exp(sqrt(-1)2piOFFSET*t );

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2.*exp(-sqrt(-1)*2*pi*mean2(offset2)*t);
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('64QAM无频偏补偿误码率','64QAM频偏补偿误码率');
```

相关文章
|
15小时前
|
算法 安全
基于龙格库塔算法的SIR病毒扩散预测matlab仿真
该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。
车辆行驶控制运动学模型的matlab建模与仿真,仿真输出车辆动态行驶过程
该课题在MATLAB2022a中建立了车辆行驶控制运动学模型并进行仿真,展示车辆动态行驶过程。系统仿真结果包含四张图像,显示了车辆在不同时间点的位置和轨迹。核心程序定义了车辆参数和初始条件,使用ode45求解器模拟车辆运动。车辆运动学模型基于几何学,研究车辆空间位姿、速度随时间变化,假设车辆在平面运动且轮胎无滑动。运动学方程描述位置、速度和加速度关系,模型预测控制用于优化轨迹跟踪,考虑道路曲率影响,提升弯道跟踪性能。
|
1天前
|
算法 调度 决策智能
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图
这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。
|
1天前
|
算法
使用k-近邻算法构建手写识别系统(kNN)
使用k-近邻算法构建手写识别系统(kNN)
16 9
|
2天前
|
存储 缓存 算法
ADOV路由和DSR路由matlab对比仿真
该程序使用MATLAB2022a进行ADOV和DSR路由协议的仿真,输出包括路由路径、跳数和长度。核心代码设置了30个节点的拓扑结构,通过`func_dijkstra`实现路由计算。算法原理部分介绍了ADOV基于跳数的最短路径寻找和DSR的源路由机制,两者都是按需反应式协议。路由发现、维护和更新过程在描述中得到详细解释。
|
2天前
|
算法
基于ADM自适应增量调制算法的matlab性能仿真
该文主要探讨基于MATLAB的ADM自适应增量调制算法仿真,对比ADM与DM算法。通过图表展示调制与解调效果,核心程序包括输入输出比较及SNR分析。ADM算法根据信号斜率动态调整量化步长,以适应信号变化。在MATLAB中实现ADM涉及定义输入信号、初始化参数、执行算法逻辑及性能评估。
|
2天前
|
机器学习/深度学习 算法
基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真
摘要: 使用MATLAB2022a,展示了一种基于遗传算法优化的CNN-GRU时间序列预测模型,融合遗传算法与深度学习,提升预测精度。遗传算法负责优化模型超参数,如学习率和神经元数量,以最小化均方误差。CNN负责特征提取,GRU处理序列数据中的长期依赖。流程包括初始化、评估、选择、交叉、变异和迭代,旨在找到最佳超参数组合。
|
1天前
|
机器学习/深度学习 人工智能 大数据
深度学习在图像识别中的应用
【6月更文挑战第11天】本文将探讨深度学习在图像识别领域的应用。随着人工智能技术的不断发展,深度学习已经成为了计算机视觉领域的重要研究方向。特别是在图像识别任务中,深度学习模型已经取得了显著的成果。本文将介绍一些常用的深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),并讨论它们在图像识别中的应用。通过实验结果和案例分析,我们将展示深度学习在图像识别中的优越性能和潜力。
|
1天前
|
机器学习/深度学习 算法
深度学习在医学影像识别中的应用与挑战
传统的医学影像识别技术在面对复杂疾病和图像异常时存在一定局限性,而深度学习作为一种新兴的人工智能技术,为医学影像识别带来了革命性的变革。本文将介绍深度学习在医学影像识别中的应用现状,并探讨应用中面临的挑战和未来发展方向。
11 3
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,包括其基本原理、成功案例以及面临的主要挑战。文章首先介绍了深度学习的基础概念和关键技术,随后通过实例分析展示了深度学习如何提高图像识别的准确性和效率。最后,讨论了深度学习在实际应用中遇到的挑战,如数据获取困难、模型泛化能力不足以及计算资源的限制等。