PAI-Diffusion中文模型全面升级,海量高清艺术大图一键生成

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 本文主要介绍-Diffusion中文模型大幅升级,本文详细介绍PAI-Diffusion中文模型的新功能和新特性。

1.背景

以Stable Diffusion模型为代表,AI生成内容(AI Generated Content,AIGC)的模型和应用呈现出井喷式的增长趋势。在先前的工作中,阿里云机器学习PAI团队开源了PAI-Diffusion系列模型(看这里),包括一系列通用场景和特定场景的文图生成模型,例如古诗配图、二次元动漫、魔幻现实等。这些模型的Pipeline除了包括标准的Diffusion Model,还集成了PAI团队先前提出的中文CLIP跨模态对齐模型(看这里)使得模型可以生成符合中文文本描述的、各种场景下的高清大图。此外,由于Diffusion模型推理速度比较慢,而且需要耗费较多的硬件资源,我们结合由PAI自主研发的编译优化工具 PAI-Blade,支持对PAI-Diffusion模型的端到端的导出和推理加速,在A10机器下做到了1s内的中文大图生成(看这里)。在本次的工作中,我们对之前的PAI-Diffusion中文模型进行大幅升级,主要的功能扩展包括:

  • 图像生成质量的大幅提升、风格多样化:通过大量对模型预训练数据的处理和过滤,以及训练过程的优化,PAI-Diffusion中文模型生成的图像无论在质量上,还是在风格上都大幅超越先前版本;
  • 丰富的精细化模型微调功能:除了对模型的标准微调,PAI-Diffusion中文模型支持开源社区的各种微调功能,包括LoRA、Textual Inversion、DreamBooth、ControlNet等,支持各类图像生成和编辑的功能;
  • 简单易用的场景化定制方案:除了训练各种通用场景下的中文模型,我们也在垂类场景下做了很多尝试和探索,通过场景化的定制,可以在各种产品中使用这些模型,包括Diffuser API、WebUI等。

在下文中,我们详细介绍PAI-Diffusion中文模型的新功能和新特性。

2.艺术画廊

在详细介绍PAI-Diffusion中文模型及其功能前,我们首先带大家参观我们的艺术画廊,下面的所有图片都采用PAI-Diffusion中文模型真实生成。

3.PAI-Diffusion ModelZoo

我们利用海量中文图文对数据,训练了多个Diffusion中文模型,参数量均在10亿左右。本次我们开源了如下两个模型。概述如下所示:

模型名 使用场景
pai-diffusion-artist-large-zh 中文文图生成艺术模型,默认支持生成图像分辨率为512*512
pai-diffusion-artist-xlarge-zh 中文文图生成艺术模型(更大分辨率),默认支持生成图像分辨率为768*768

为了提升模型输出图像的质量,在最大限度内避免出现不合规或低质量内容,我们搜集海量开源的图文对数据集,包括大规模中文跨模态预训练数据集WuKong、大规模多语言多模态数据集LAION-5B等。我们针对图像和文本进行了多种清洗方式,筛选掉违规和低质量数据。具体的数据处理方式包括NSFW(Not Safe From Work)数据过滤、水印数据去除,以及使用CLIP分数和美观值分数评分,选出最合适的预训练数据子集进行训练。与英文开源社区的Diffusion模型不同,我们的CLIP Text Encoder采用EasyNLP自研的中文CLIP模型(https://github.com/alibaba/EasyNLP),并且在Diffusion训练过程中冻结其参数,使得模型对中文语义的建模更加精确。值得注意的是,上表的图像分辨率指训练过程中的图像分辨率,在模型推理阶段可以设置不同的分辨率。

4.PAI-Diffusion模型特性

为了更加便于广大用户使用PAI-Diffusion模型,我们从如下几个方面详细介绍PAI-Diffusion模型的特性。

5.丰富多样的模型微调方法

PAI-Diffusion模型和社区Stable Diffusion等模型的参数量一般在十亿左右。这些模型的全量参数微调往往需要消耗大量计算资源。除了标准的模型微调,PAI-Diffusion模型支持多种轻量化微调算法,支持用户在计算量尽可能少的情况下,实现模型的特定领域、特定场景的微调。以下,我们也给出两个轻量化微调的示例。

5.1使用LoRA进行模型轻量化微调

PAI-Diffusion模型可以使用LoRA(Low-Rank Adaptation)算法进行轻量化微调,大幅降低计算量。调用开源脚本train_text_to_image_lora.py,我们同样可以实现PAI-Diffusion中文模型的轻量化微调。训练命令示例如下:

export MODEL_NAME="model_name"
export TRAIN_DIR="path_to_your_dataset"
export OUTPUT_DIR="path_to_save_model"

accelerate launch train_text_to_image_lora.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$TRAIN_DIR \
  --resolution=512 --center_crop --random_flip \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=15000 \
  --learning_rate=1e-04 \
  --max_grad_norm=1 \
  --lr_scheduler="cosine" --lr_warmup_steps=0 \
  --output_dir=$OUTPUT_DIR

其中,MODEL_NAME是用于微调的PAI-Diffusion模型名称或路径,TRAIN_DIR是训练集的本地路径,OUTPUT_DIR为模型保存的本地路径(只包含LoRA微调参数部分)。当模型LoRA轻量化微调完毕之后可以使用如下示例代码进行文图生成:

from diffusers import StableDiffusionPipeline

model_id = "model_name"
lora_path = "model_path/checkpoint-xxx/pytorch_model.bin"
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe.unet.load_attn_procs(torch.load(lora_path))
pipe.to("cuda")
image = pipe("input text").images[0]  
image.save("result.png")

其中,model_path即为微调后的模型保存的本地路径(只包含LoRA微调参数部分),即前一步骤的OUTPUT_DIR;model_id为原始的没有经过LoRA微调的模型。

5.2使用Textual Inversion进行模型定制化轻量微调

由于PAI-Diffusion模型一般用于生成各种通用场景下的图像,Textual Inversion是一种定制化轻量微调技术,使模型生成原来模型没有学会的、新的概念相关图像。PAI-Diffusion模型可以使用Textual Inversion算法进行轻量化微调。同样地,我们可以运行脚本textual_inversion.py,训练命令示例如下:

export MODEL_NAME="model_name"
export TRAIN_DIR="path_to_your_dataset"
export OUTPUT_DIR="path_to_save_model"

accelerate launch textual_inversion.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$TRAIN_DIR \
  --learnable_property="object" \
  --placeholder_token="<小奶猫>" --initializer_token="猫" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=100 \
  --learning_rate=5.0e-04 --scale_lr \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --output_dir=$OUTPUT_DIR

其中,MODEL_NAME是用于微调的PAI-Diffusion模型名称,TRAIN_DIR是前述训练集的本地路径,OUTPUT_DIR为模型保存的本地路径。其中placeholder_token是与新的概念相关的文本,initializer_token是与新的概念密切相关的字(用于初始化新的概念对应的参数),这里我们以小奶猫为例。当模型轻量化微调完毕之后可以使用如下示例代码进行文图生成:

from diffusers import StableDiffusionPipeline

model_path = "path_to_save_model"
pipe = StableDiffusionPipeline.from_pretrained(model_path).to("cuda")
image = pipe("input text").images[0]  
image.save("result.png")

其中,model_path即为微调后的模型保存的本地路径,即前一步骤的OUTPUT_DIR。注意在使用微调后的模型生成包含新的概念的图像时,文本中新的概念用步骤二中的placeholder_token表示,例如:

6可控的图像编辑功能

AIGC系列模型的潜在风险在于容易生成不可控的、带有违法信息的内容,影响了这些模型在下游业务场景中的应用。PAI-Diffusion中文模型支持多种可控的图像编辑功能,允许用户对生成的图像内容作出限制,从而使得结果更加可用。PAI-Diffusion中文模型对StableDiffusionImg2ImgPipeline做到完全兼容,这一文本引导的图像编辑Pipeline允许模型在给定输入文本和图像的基础上,生成相关的图像,示例脚本如下:

from diffusers import StableDiffusionImg2ImgPipeline

pipe = StableDiffusionImg2ImgPipeline.from_pretrained("model_name").to("cuda")
image = pipe(prompt="input text", image=init_image, strength=0.75, guidance_scale=7.5).images[0]
image.save("result.png")

以下给出一个输入输出的示例:

7.场景定制化的功能支持

除了用于生成艺术大图,通过对PAI-Diffusion中文模型进行继续预训练,我们也可以得到高度场景化的中文模型。以下是PAI-Diffusion中文模型在美食数据上继续预训练后生成的结果,可以看出只要拥有高质量的业务数据,可以产出针对不同业务场景的Diffusion模型。这些模型可以进一步与LoRA、ControlNet等技术进行无缝结合,做到与业务更契合、更可控的图像编辑与生成。

8.模型的使用和下载

9.在开源社区使用PAI-Diffusion中文模型

为了方便开源社区使用这些模型,我们将这两个模型接入了两个知名的开源模型分享社区HuggingFace和ModelScope。以HuggingFace为例,我们可以使用如下代码进行模型推理:

from diffusers import StableDiffusionPipeline

model_id = "alibaba-pai/pai-diffusion-artist-large-zh"
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")

prompt = "雾蒙蒙的日出在湖面上"
image = pipe(prompt).images[0]  
image.save("result.png")

在ModelScope的使用接口示例如下:

from modelscope.pipelines import pipeline
import cv2

p = pipeline('text-to-image-synthesis', 'PAI/pai-diffusion-artist-large-zh', model_revision='v1.0.0')
result = p({'text': '雾蒙蒙的日出在湖面上'})
image = result["output_imgs"][0]
cv2.imwrite("image.png", image)

此外,我们也在EasyNLP算法框架中开设了Diffusion算法专区(链接),提供各种PAI-Diffusio模型的使用脚本和教程。

10.在PAI-DSW使用PAI-Diffusion中文模型

PAI-DSW(Data Science Workshop)是阿里云机器学习平台PAI开发的云上IDE,面向不同水平的开发者,提供了交互式的编程环境(文档)。在DSW Gallery中,提供了各种Notebook示例,方便用户轻松上手DSW,搭建各种机器学习应用。我们也在DSW Gallery中上架了使用PAI-Diffusion中文模型的Sample Notebook,欢迎大家体验!

免费领取:阿里云机器学习平台PAI为开发者提供免费试用额度,包含DSW、DLC、EAS多款产品。https://free.aliyun.com/?pipCode=learn

11.未来展望

在这一期的工作中,我们对PAI-Diffusion中文模型的效果和功能进行了大幅扩展,使得图像生成质量的大幅提升、风格多样化。同时,我们支持包括LoRA、Textual Inversion等多种精细化模型微调和编辑功能。此外,我们也展示了多种场景化定制方案,方便用户在特定场景下训练和使用自己的Diffusion中文模型。在未来,我们计划进一步扩展各种场景的模型功能。

12.阿里灵杰回顾

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
29天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
13天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
64 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
22天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
40 12
|
29天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
51 8
|
29天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
51 6
|
1月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
43 0

热门文章

最新文章

相关产品

  • 人工智能平台 PAI