使用 PAI-Blade 优化 Stable Diffusion 推理流程(二)

简介: 本篇我们继续介绍使用 PAI-Blade 优化 LoRA 和 Controlnet 的推理流程。相关优化已经同样在 registry.cn-beijing.aliyuncs.com/blade_demo/blade_diffusion镜像中可以直接使用。同时,我们将介绍 Stable-Diffusion-webui 中集成 PAI-Blade 优化的方法。

背景

上一篇中,我们使用了 PAI-Blade 优化了 diffusers 中 Stable Diffusion 模型。本篇,我们继续介绍使用 PAI-Blade 优化 LoRA 和 Controlnet 的推理流程。相关优化已经同样在 registry.cn-beijing.aliyuncs.com/blade_demo/blade_diffusion镜像中可以直接使用。同时,我们将介绍 Stable-Diffusion-webui 中集成 PAI-Blade 优化的方法。

LoRA优化

PAI-Blade优化LoRA的方式,与前文方法基本相同。包括:加载模型、优化模型、替换原始模型。以下仅介绍与前文不同的部分。

首先,加载Stable DIffusion模型后,需要加载LoRA权重。

pipe.unet.load_attn_procs("lora/")

使用LoRA时,用户可能需要切换不同的LoRA权重,尝试不同的风格。因此,PAI-Blade需要在优化配置中,传入freeze_module=False,使得优化过程中,不对权重进行编译优化,从而不影响模型加载权重的功能。通过这种方式,PAI-Blade优化后的模型,依然可以使用pipe.unet.load_attn_procs()方式加载LoRA的权重,而不需要重新编译优化。

由于模型权重未进行优化流程,一些对常量的优化无法进行,因此会损失部分优化空间。为了解决性能受损的问题,PAI-Blade中,使用了部分patch,对原始模型进行python层级的替换,使得模型更适合PAI-Blade优化。通过在优化前,使用 torch_blade.monkey_patch优化 Stable Diffusion 模型中的 unet和vae部分,能更好的发挥PAI-Blade能力。

from torch_blade.monkey_patch import patch_utils
patch_utils.patch_conv2d(pipe.vae.decoder)
patch_utils.patch_conv2d(pipe.unet)
opt_cfg = torch_blade.Config()
...
opt_cfg.freeze_module = False
with opt_cfg, torch.no_grad():
    ...

如果没有LoRA权重切换的需求,可以忽略上述步骤,获得更快的推理速度。

Benchmark

我们在A100/A10上测试了上述对LoRA优化的结果,测试模型为 runwayml/stable-diffusion-v1-5,测试采样步数为50。

1.png2.png


ControlNet适配

根据 ControlNet 的模型结构图以及diffusers中ControlNet实现,可以将ControlNet的推理分为两部分。

image.png

  1. ControlNet部分,其input blocks和  mid block 结构与Stable DiffusionUnet的前半部分相同,剩余部分为卷积。ControlNet所有输出传入到Stable DIffusion的Unet中,作为输入;
  2. Stable Diffusion 的Unet除了原始输入外,额外增加了ControlNet的输出作为输入。

根据上述特点,我们可以做出以下的优化:

首先,优化ControlNet,

controlnet = torch_blade.optimize(pipe.controlnet, model_inputs=tuple(controlnet_inputs), allow_tracing=True)

在优化unet模型时,由于torch2.0之前的版本,torch.jit.trace不支持使用dict作为输入,所以我们使用Wrapper包装Unet后便于trace和优化。同时,使用优化后的ControlNet执行一次推理,将其输出添加到Unet输入中。

class UnetWrapper(torch.nn.Module):
    def __init__(self, unet):
        super().__init__()
        self.unet = unet
    def forward(
        self,
        sample,
        timestep,
        encoder_hidden_states,
        down_block_additional_residuals,
        mid_block_additional_residual,
    ):
        return self.unet(
            sample,
            timestep,
            encoder_hidden_states=encoder_hidden_states,
            down_block_additional_residuals=down_block_additional_residuals,
            mid_block_additional_residual=mid_block_additional_residual,
        )
...
down_block_res_samples, mid_block_res_sample = controlnet(*controlnet_inputs)
unet_inputs += [tuple(down_block_res_samples), mid_block_res_sample]
unet = torch_blade.optimize(UnetWrapper(pipe.unet).eval(), model_inputs=tuple(unet_inputs), allow_tracing=True)

结合上述功能,可以同时实现:

  1. LoRA权重替换;
  2. ControlNet权重替换,来使用不同ControlNet model。

benchmark

我们在A100/A10上测试了上述对ControlNet优化的结果,测试模型为 runwayml/stable-diffusion-v1-5,测试采样步数为50。

image.png6.png


小结

在上述部分,我们使用了PAI-Blade优化了Stable DIffusion模型的encoder、unet、decoder部分,大幅降低推理延时的同时,减少了显存占用,从而降低Stable DIffusion模型推理成本。同时,PAI-Blade支持了LoRA、ControlNet等常用功能,扩展了PAI-Blade的实用性。

webui适配

stable-diffusion-webui 是 Stable DIffusion非常热门的应用,PAI-Blade 同样提供了对其优化支持。目前,PAI-Blade已经支持了模型权重切换、LoRA、ControlNet等webui中常用的功能,同时通过 extension 的形式集成,可以便于用户使用。目前,相关优化已经集成到 PAI-EASeas-registry.cn-hangzhou.cr.aliyuncs.com/pai-eas/sdwebui-inference:0.0.2-py310-gpu-cu117-ubuntu2204-blade 镜像,可以通过PAI_EAS直接体验PAI-Blade的优化能力。

下面介绍该插件中,PAI-Blade在webui中优化方式和性能。webui优化原理与diffusers大致相同,以下是几个主要不同点:

分模块优化Unet和ControlNet

由于webui中,ControlNet需要逐个调用Unet的子模块,为了兼顾ControlNet,PAI-Blade并没有像diffusers中一样,优化整个Unet和ControlNet。而是采取逐个子模块优化的方法,将Unet、ControlNet中所有的down blocks、 mid block、up blocks分别进行优化和替换。经过测试,此种优化方式几乎不影响模型推理速度。

不冻结权重

webui的网页上,可以快捷的切换模型权重。因此,PAI-Blade采取和diffusers中LoRA优化同样的方法,不对权重进行优化。

LoRA优化

webui中,多个LoRA会逐个调用LoRA计算,计算时间随LoRA数量增多而变长。PAI-Blade 在加载LoRA权重时,将多个LoRA的权重与scale预先fuse,减少了运行时的开销。加载和fuse的开销,经测试可忽略不计。

Benchmark

我们在A10上测试了webui中,Stable DIffusion V1 模型在 batch size为1,分辨率为512*512条件下的推理速度。由于webui中涉及到网络传输等模型无关部分的延迟,因此本部分只测试了模型部分耗时。结果如下:

steps

eager

xformers

PAI-Blade

no LoRAs

+ 2 LoRAs

ControlNet

no LoRAs

+ 2 LoRAs

ControlNet

any LoRAs

ControlNet

20

2.03

2.94

2.75

1.57

2.46

2.14

1.15

1.62

50

4.77

7.17

6.64

3.63

5.86

5.06

2.59

3.75

100

9.45

14.18

13.13

7.10

11.54

9.90

4.96

7.35

由该表可知,webui在eager和xformers模式下,推理时间随LoRA数量增加而延长,而PAI-Blade将所有LoRA的权重融合到基础模型,所以推理时间与LoRA数量无关。

总结

这两篇文章中,我们介绍了PAI-Blade 在Stable DIffusion模型上的优化经验,目前已经支持了Diffusers和Stable-DIffusion-webui 两种主流推理方式。

我们调研了相关公开的竞品对Stable Diffusion的支持情况,结果如下:

框架/模型

Base Model

LoRA

ControlNet

webui

xformers

AITemplete

OneFlow

TensorRT

PAI-Blade

根据公开性能数字和业务实测,PAI-Blade对Stable DIffusion模型,不仅支持最为全面,同时性能和显存使用也是最佳水平。

目前PAI-Blade已经陆续在相关业务中上线使用。接下来,我们将继续优化性能,完善相关功能支持。欢迎大家交流、联系和合作~



【往期回顾】:

  1. 使用 PAI-Blade 优化 Stable Diffusion 推理流程(一)
  2. 快速玩转 Llama2!阿里云机器学习 PAI 推出最佳实践

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
407 2
|
4月前
|
机器学习/深度学习 算法 算法框架/工具
MINUN: 微控制器上的精确机器学习推理——论文阅读
MINUN是一个专为微控制器设计的高效机器学习推理框架,能精确解决TinyML中的三大挑战:数字表示参数化、位宽分配优化和内存碎片管理。它支持如Arduino和STM32等低功耗设备,显著减少内存占用,同时保持模型精度。
417 122
|
4月前
|
机器学习/深度学习 存储 TensorFlow
TensorFlow Lite Micro:嵌入式TinyML系统上的机器学习推理框架——论文深度解析
TensorFlow Lite Micro(TFLM)是专为嵌入式系统设计的轻量级机器学习推理框架,适用于仅有几十KB内存的微控制器。它通过极简架构、模块化设计和内存优化策略,在资源受限设备上高效运行TinyML模型,广泛应用于关键词检测、传感器分析、预测性维护等领域。TFLM支持跨平台部署,并允许硬件厂商提供定制优化,兼顾灵活性与性能。
1111 6
|
6月前
|
机器学习/深度学习 SQL 运维
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
187 4
|
9月前
|
人工智能 边缘计算 前端开发
人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。
|
6月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
6月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
8月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
1914 12
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
2188 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
727 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本

相关产品

  • 人工智能平台 PAI