使用 PAI-Blade 优化 Stable Diffusion 推理流程

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: PAI-Blade是 PAI 推出的通用推理优化工具,可以通过模型系统联合优化,使模型达到最优推理性能。

背景

AIGC是人工智能计算领域里发展迅速的重要业务。Stable Diffusion 是其中最热门的开源模型,受到广泛关注。然而,随着应用场景不断扩大,Stable Diffusion所面临的推理时延和计算成本问题也越来越突出。

简介

PAI-Blade是 PAI 推出的通用推理优化工具,可以通过模型系统联合优化,使模型达到最优推理性能。PAI-Blade依托于完全动态尺寸的AI编译器BladeDISC 基于深度学习自动调度的高性能计算库BlaDNN, 为包括图像生成模型Stable Diffsuion, 大语言模型LLM, 大规模稀疏推荐模型CTR, 语音识别模型ASR等等在内的众多模型提供自动的高性能推理优化。

BladeDISC 是一款支持完全动态尺寸的AI编译器,前端支持Pytorch和Tensorflow模型。对于Pytorch模型能够支持 TorchScript 和 TorchDynamo 两种输入模式,后端通过 AStitch 大尺度算子融合技术和高效的 codegen 逻辑提升模型访存密集算子的执行效率。BladeDISC现已在github开源,项目地址:https://github.com/alibaba/BladeDISC

BlaDNN 是基于深度学习自动调度的高性能计算库。BlaDNN 作为Ansor的升级版,不仅生成的kernel性能超过Ansor,而且可以完全依赖DNN自动调度而不使用Tuning调优,使得Dynamic Shape业务场景的在线自动调度成为可能,基于DNN自动调度生成的GPU计算密集算子的平均性能达到极致tuning性能的99.39%,通过模型系统联合优化DNN推理延时低至2us, 并且只使用一个CPU Core,从而不会对GPU模型本身的性能造成任何抖动。

通过采用 PAI-Blade 加速推理优化技术,对访存密集型算子进行大尺度融合及优化代码生成,对计算密集型算子进行自动调度,可以大幅度降低Stable Diffusion的推理延迟和显存占用,从而减少计算成本。使用 PAI-Blade 优化Stable Diffusion 具有以下三点优势:

  1. 高性能,使用Blade可以降低 Text2Img、Img2Img 等推理流程的端到端延迟 2.42-3.05 倍,同时可降低省显存占用至多 5.27 倍,超过TensorRT-8.5等业内SOTA优化手段。
  2. 完全动态shape支持,一次优化后,可以支持任意形状、batch size的输入。
  3. 易用性、可扩展性:仅需数行代码即可在多类pipeline中启用 Blade优化,同时能支持LoRA等推理方案的优化。

使用示例

本文接下来以社区流行的 "runwayml/stable-diffusion-v1-5" 的 Text2Img pipeline 为例,详细介绍 PAI-Blade 在各类使用场景下的使用方法。

环境安装

下述示例完整的运行脚本及相关环境已集成到 registry.cn-beijing.aliyuncs.com/blade_demo/blade_diffusion docker 中。在该docker中,直接通过 python /blade/blade_diffusion.py 即可运行推理示例。

官方模型优化

使用 PAI-Blade 优化 Stable Diffusion 模型可以分为以下几个步骤。

首先,加载预训练的模型。

from diffusers import StableDiffusionPipeline
device = torch.device("cuda:0")
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="fp16", torch_dtype=torch.float16).to(device)

第二步,使用 PAI-Blade 进行优化。注意,由于 PAI-Blade 是完全动态shape的优化工具,优化完成后可使用任意shape进行推理。

import torch_blade
opt_cfg = torch_blade.Config()
opt_cfg.enable_fp16 = True
with opt_cfg, torch.no_grad():
    encoder = blade_optimize(pipe.text_encoder, model_inputs=encoder_inputs, allow_tracing=True)
    unet = blade_optimize(pipe.unet, model_inputs=unet_inputs, allow_tracing=True)
    decoder = blade_optimize(pipe.vae.decoder, model_inputs=decoder_inputs, allow_tracing=True)

最后,使用优化好的模型替换原始模型,后续即可以原始 pipeline 同样的方式进行推理。

@dataclass
class UNet2DConditionOutput:
    sample: torch.FloatTensor
class TracedUNet(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.config = pipe.unet.config
        self.in_channels = pipe.unet.in_channels
        self.device = pipe.unet.device
    def forward(self, latent_model_input, t, encoder_hidden_states, **kwargs):
        sample = unet(latent_model_input.half(), t.half(), encoder_hidden_states.half())["sample"]
        return UNet2DConditionOutput(sample=sample)
class TracedEncoder(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.config = pipe.text_encoder.config
        self.device = pipe.text_encoder.device
        self.dtype = torch.half
    def forward(self, input_ids, **kwargs):
        embeddings = encoder(input_ids.long())
        return [embeddings["last_hidden_state"]]
class TracedDecoder(torch.nn.Module):
    def forward(self, input):
        return decoder(input.half())
pipe.text_encoder = TracedEncoder()
pipe.unet = TracedUNet()
pipe.vae.decoder = TracedDecoder()

A100 性能对比

image size

samplesteps

Time of Pytorch(s)

Time of PAI-Blade(s)

speedup

Pytorch memory usage (GB)

PAI-Blade memory usage (GB)

1024x1024

50

13.26

4.34

3.06X

32.91

6.25

768x768

50

5.65

2.00

2.83X

14.99

5.91

512x512

50

2.24

0.84

2.67X

6.60

5.42

A10 性能对比

image size

samplesteps

Time of Pytorch(s)

Time of PAI-Blade(s)

speedup

Pytorch memory usage (GB)

PAI-Blade memory usage (GB)

1024x1024

50

OOM

13.86

-

OOM

6.89

768x768

50

13.13

5.61

2.34X

12.60

6.22

512x512

50

4.53

2.11

2.15X

6.28

5.47

推理结果验证

使用PAI-Blade优化后,生成的图像与Pytorch原始输出对比,观察优化结果是否正确。左图为Pytorch eager模式输出,右图为PAI-Blade优化后的模型输出。

1.png


已验证的pipeline类型

  1. StableDiffusionPipeline
  2. StableDiffusionImg2ImgPipeline
  3. StableDiffusionInpaintPipeline
  4. AltDiffusionPipeline

LoRA优化

LoRA 是指在原始模型基础上,添加额外的低秩矩阵来微调预训练的模型,并且只训练那些新添加的权重,从而大幅降低微调成本。可以通过 diffusers官方训练代码 微调得到 LoRA 权重。diffusers 加载使用 LoRA 后,模型运行方式与原始模型略有不同,带来额外计算开销。

PAI-Blade 目前已适配 huggingface/diffusers 中 LoRA 优化方式。同样的,Blade 针对同一pipeline,只需优化一次,即可使用任意的 LoRA 权重进行推理。我们将在下一篇文章中介绍PAI-Blade 优化 LoRA 的使用方式,敬请期待。


展望

目前,Stable Diffusion相关技术仍在不断演化中,PAI-Blade 团队也时刻关注社区趋势,将优化适配到各种工具中去。目前团队主要集中在:

  1. 将相关优化集成到 stable-diffusion-webui 中;
  2. 优化 finetune 训练速度。



【往期回顾】:

  1. 快速玩转 Llama2!阿里云机器学习 PAI 推出最佳实践
  2. 【ACL 2023】面向轻量化文图检索的Dual-Encoder模型蒸馏算法ConaCLIP
  3. 【ACL2023】基于电商多模态概念知识图谱增强的电商场景图文模型FashionKLIP
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
8天前
|
机器学习/深度学习 数据可视化 数据处理
机器学习在天气预报模型优化中的应用
机器学习在天气预报模型优化中的应用
|
6天前
|
机器学习/深度学习 数据采集 运维
智能化运维:利用机器学习优化IT基础设施管理
在数字化时代的浪潮中,企业对IT运维的要求日益提高,传统的管理模式已难以满足快速发展的需求。本文探讨了如何通过集成机器学习技术来提升IT基础设施管理的智能化水平,旨在帮助运维团队高效应对复杂挑战,保障系统的高可用性和性能。文章首先分析了当前运维面临的主要问题,随后详细介绍了机器学习在故障预测、自动化处理和安全防护方面的应用案例,并讨论了实施智能运维时可能遇到的挑战及解决策略。最终,文章强调了持续学习和适应的重要性,以及智能运维在未来IT发展中的关键作用。
|
6天前
|
机器学习/深度学习 算法 数据挖掘
机器学习与智能优化——利用简单遗传算法优化FCM
机器学习与智能优化——利用简单遗传算法优化FCM
24 5
|
9天前
|
机器学习/深度学习 设计模式 人工智能
人工智能和机器学习技术来优化微服务架构
人工智能和机器学习技术来优化微服务架构
22 1
|
15天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能平台PAI产品使用合集之如何使用blade进行优化
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
15天前
|
机器学习/深度学习 人工智能 算法
人工智能平台PAI产品使用合集之多目标模型eval比较耗时间,该如何优化
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
22天前
|
机器学习/深度学习 安全 算法
利用机器学习优化网络安全防御策略
【6月更文挑战第3天】随着网络攻击的日益猖獗,传统的安全防御机制已难以满足企业对数据保护的需求。本文探讨如何应用机器学习技术来预测和防御潜在的网络安全威胁,通过分析历史数据模式,自动调整安全策略,从而在不断变化的威胁环境中保持企业的网络安全。
|
26天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型:从数据预处理到模型优化
【5月更文挑战第31天】 在当今数据驱动的时代,构建一个高效的机器学习(ML)模型是解决复杂问题的关键。本文将引导读者通过一系列细致的步骤来搭建健壮且精确的ML模型。我们将重点讨论数据预处理的策略、选择合适的算法、模型训练的技巧以及性能优化的方法。通过实例和代码示例,本技术分享旨在为从业者提供实用的指导,帮助他们在面对实际问题时能够灵活应用机器学习技术,并达到提高预测准确率和模型泛化能力的目的。
|
26天前
|
机器学习/深度学习 存储 算法
利用机器学习优化数据中心能效的策略
【5月更文挑战第31天】在信息技术不断进步的今天,数据中心作为计算和存储的核心,其能源效率问题日益凸显。传统的能效管理方法已无法满足当前复杂多变的需求。本文提出了一种基于机器学习技术的数据中心能效优化策略,通过智能算法实时监控和调整数据中心的运行状态,以达到降低能耗、提高资源利用率的目的。该策略不仅考虑了服务器负载和冷却系统的效率,还兼顾了可再生能源的使用情况,为绿色计算提供了新的视角。
|
27天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【5月更文挑战第30天】 在机器学习项目的实施过程中,数据科学家和工程师们经常面临一个复杂且多变的挑战——如何构建一个既准确又高效的模型。本文将深入探讨构建高效机器学习模型的关键步骤,包括数据预处理的技巧、特征选择的策略、模型训练的细节以及超参数调优的方法。通过实践案例的分析,我们将展示如何克服过拟合、提高模型的泛化能力,并最终实现在保持高准确率的同时,提升模型的运行效率。

相关产品

  • 人工智能平台 PAI