「大数据系列」:Apache Hive 分布式数据仓库项目介绍

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 「大数据系列」:Apache Hive 分布式数据仓库项目介绍


Apache Hive™数据仓库软件有助于读取,编写和管理驻留在分布式存储中的大型数据集并使用SQL语法进行查询


Hive 特性

Hive构建于Apache Hadoop™之上,提供以下功能:

  • 通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析。
  • 一种在各种数据格式上强加结构的机制
  • 访问直接存储在Apache HDFS™或其他数据存储系统(如Apache HBase™)中的文件
  • 通过Apache Tez™,Apache Spark™或MapReduce执行查询
  • 使用HPL-SQL的过程语言
  • 通过Hive LLAP,Apache YARN和Apache Slider进行亚秒级查询检索。

Hive提供标准的SQL功能,包括许多后来的SQL:2003和SQL:2011分析功能。

Hive的SQL也可以通过用户定义的函数(UDF),用户定义的聚合(UDAF)和用户定义的表来扩展用户代码

函数(UDTF)。

没有唯一的“Hive格式”存储数据。 Hive附带内置连接器,用于逗号和制表符分隔值(CSV/ TSV)文本文件,Apache Parquet™,Apache ORC™和其他格式。

用户可以使用其他格式的连接器扩展Hive。有关详细信息,请参阅开发人员指南中的File Formats和Hive SerDe。

Hive不适用于联机事务处理(OLTP)工作负载。它最适用于传统的数据仓库任务。

Hive旨在最大限度地提高可伸缩性(通过向Hadoop集群动态添加更多计算机来扩展),性能,可扩展性,容错,与输入格式松散耦合。

Hive的组件包括HCatalog和WebHCat。

HCatalog是Hive的一个组件。它是Hadoop的表和存储管理层,使用户可以使用不同的数据

  • 处理工具 - 包括Pig和MapReduce - 可以更轻松地在网格上读写数据。
  • WebHCat提供的服务可用于运行Hadoop MapReduce(或YARN),Pig,Hive作业或执行Hive元数据使用HTTP(REST样式)接口的操作。

Hive 使用

Hive SQL语言手册:命令,CLI,数据类型,

DDL(创建/删除/更改/截断/显示/描述),统计(分析),索引,存档,

DML(加载/插入/更新/删除/合并,导入/导出,解释计划),

查询(选择),运算符和UDF,锁,授权

文件格式和压缩:RCFile,Avro,ORC,Parquet; 压缩,LZO

程序语言:Hive HPL / SQL

Hive配置属性

HIve 客户端

  • Hive客户端(JDBC,ODBC,Thrift)
  • HiveServer2:HiveServer2客户端和直线,Hive指标

Hive Web界面

Hive SerDes:Avro SerDe,Parquet SerDe,CSV SerDe,JSON SerDe

Hive Accumulo集成

Hive HBase集成

Druid整合

Hive Transactions,Streaming Data Ingest和Streaming Mutation API

Hive 计数器

Hive 管理

安装Hive

配置Hive

设置Metastore

Hive Schema Tool

设置Hive Web界面

设置Hive服务器(JDBC,ODBC,Thrift,HiveServer2)

Hive复制

Hive on Amazon Web Services

Amazon Elastic MapReduce上的Hive

Hive on Spark

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
63 3
|
3月前
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
9天前
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
59 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
60 4
|
1月前
|
缓存 NoSQL Ubuntu
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
55 3
|
1月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
34 0
|
3月前
|
存储 机器学习/深度学习 数据采集
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
|
3月前
|
消息中间件 存储 大数据
大数据-数据仓库-实时数仓架构分析
大数据-数据仓库-实时数仓架构分析
137 1
|
3月前
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
66 3

热门文章

最新文章

推荐镜像

更多