Apache Airflow 开源最顶级的分布式工作流平台

简介: Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。

背景介绍

Apache Airflow(或简称Airflow)是一个以编程方式创作,计划和监视工作流的平台。

当工作流定义为代码时,它们将变得更加可维护、可版本控制、可测试和协作。

使用 Airflow 将工作流创作为任务的有向无环图 (DAG)。Airflow 调度程序在遵循指定的依赖项的同时,在一组工作线程上执行您的任务。丰富的命令行实用程序使在 DAG 上执行复杂的手术变得轻而易举。丰富的用户界面使您可以轻松可视化生产中运行的管道、监视进度并在需要时解决问题。

Airflow最适合大多数静态且缓慢变化的工作流程。当 DAG 结构在一次运行到下一次运行之间相似时,它会阐明工作单元和连续性。其他类似的项目包括Luigi,Oozie和Azkaban。

Airflow 通常用于处理数据,但认为理想情况下任务应该是幂等的(即任务的结果将是相同的,并且不会在目标系统中创建重复的数据),并且不应将大量数据从一个任务传递到下一个任务(尽管任务可以使用 Airflow 的 XCom 功能传递元数据)。对于高容量、数据密集型任务,最佳做法是委派给专门从事此类工作的外部服务。

Airflow 不是流解决方案,但它通常用于处理实时数据,从流中批量提取数据。

使用原则:

  • 动态:气流管道是配置即代码(Python),允许动态管道生成。这允许编写动态实例化管道的代码。
  • 可扩展:轻松定义您自己的运算符、执行器并扩展库,使其适合适合您的环境的抽象级别。
  • 优雅:气流管道精简而明确。参数化脚本是使用强大的 Jinja 模板引擎内置到 Airflow 的核心中。
  • 可扩展:Airflow 具有模块化架构,并使用消息队列来编排任意数量的工作线程。

实战总结

DAG:环境中所有 DAG 的概述。

网格:跨越时间的 DAG 的网格表示形式。

图形:特定运行的 DAG 依赖项及其当前状态的可视化效果。

任务持续时间:一段时间内在不同任务上花费的总时间。

甘特图:DAG 的持续时间和重叠。

代码:查看 DAG 源代码的快速方法。

使用总结

​ Airflow是一个可编程,调度和监控的工作流平台,基于有向无环图(DAG),airflow可以定义一组有依赖的任务,按照依赖依次执行。airflow提供了丰富的命令行工具用于系统管控,而其web管理界面同样也可以方便的管控调度任务,并且对任务运行状态进行实时监控,方便了系统的运维和管理。

本文由博客一文多发平台 OpenWrite 发布!

相关文章
|
3月前
|
存储 监控 固态存储
【vSAN分布式存储服务器数据恢复】VMware vSphere vSAN 分布式存储虚拟化平台VMDK文件1KB问题数据恢复案例
在一例vSAN分布式存储故障中,因替换故障闪存盘后磁盘组失效,一台采用RAID0策略且未使用置备的虚拟机VMDK文件受损,仅余1KB大小。经分析发现,该VMDK文件与内部虚拟对象关联失效导致。恢复方案包括定位虚拟对象及组件的具体物理位置,解析分配空间,并手动重组RAID0结构以恢复数据。此案例强调了深入理解vSAN分布式存储机制的重要性,以及定制化数据恢复方案的有效性。
92 5
|
3月前
|
消息中间件 Java Kafka
"Kafka快速上手:从环境搭建到Java Producer与Consumer实战,轻松掌握分布式流处理平台"
【8月更文挑战第10天】Apache Kafka作为分布式流处理平台的领头羊,凭借其高吞吐量、可扩展性和容错性,在大数据处理、实时日志收集及消息队列领域表现卓越。初学者需掌握Kafka基本概念与操作。Kafka的核心组件包括Producer(生产者)、Broker(服务器)和Consumer(消费者)。Producer发送消息到Topic,Broker负责存储与转发,Consumer则读取这些消息。首先确保已安装Java和Kafka,并启动服务。接着可通过命令行创建Topic,并使用提供的Java API实现Producer发送消息和Consumer读取消息的功能。
71 8
|
3月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
203 0
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
108 2
基于Redis的高可用分布式锁——RedLock
|
3月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
7天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
40 16
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
57 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
1月前
|
NoSQL Redis 数据库
计数器 分布式锁 redis实现
【10月更文挑战第5天】
47 1

热门文章

最新文章

推荐镜像

更多