大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等

简介: 大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop

HDFS

MapReduce

Hive

Flume

Sqoop

Zookeeper

HBase

Redis

章节内容

上一节我们完成了:


HBase Maven工程 POM引入

HBase JavaAPI

HBase Java实现 增、删、改、查

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

Redis简介

Redis(Remote Dictionary Server)远程字典服务。是用C语言开发的。

官方网站是:

http://redis.io/

Redis 数据类型

其中一共五种数据类型:


字符串类型

散列类型

列表类型

集合类型

有序集合类型

缓存场景

DB缓存

DB缓存,减轻DB服务器压力。

一般情况下数据存在数据库中,应用程序直接操作数据库。

当访问量上万,数据库压力增大,可以采取的方案有:


读写分离

分库分表

数据库的文件是在硬盘中,与内存做交换。

对于大量瞬时访问,会导致频繁IO而无法工作。


Session分离

传统的Session是由Tomcat自行维护和管理,在集群的Tomcat环境中,不同的Tomcat会有各自的Session。


各个Tomcat之间复制Session,性能损耗

不能保证Tomcat之间的Session实时同步

可以将登录后的Session信息存入 Redis 中,这样多个Tomcat服务器可以共享Session信息。

具体的整体架构图是:

分布式锁

一般锁是多线程 锁,但是在多个进程中,需要上锁的话,就需要分布式锁。


读写模式

旁路模式

Cache Aside Pattern 旁路缓存,是最经典的缓存+数据库读写模式

具体的方案是:读的时候,先读缓存,缓存没有再读数据库,读出后写入缓存。

代码逻辑上如下图:

当我们要更新数据的时候:先更新数据库,再删除缓存。

穿透模式

Read/Write Through Pattern 穿透读/穿透写 直接读/直接写 模式。


Read Through Pattern

Write Through Pattern

缓存模式

Write Behind Caching Pattern 只更新缓存模式

应用程序只更新缓存,缓存通过异步的方式将数据批量整合后写入DB。

不能实时同步数据,甚至宕机会丢数据。


Redis 适用场景

缓存使用,减轻DB压力

DB使用 用于临时存储数据

解决分布式场景下Session分离的问题

任务队列(秒杀,抢红包)乐观锁等等

应用排行榜

签到 bitmap

冷热数据交换

等等

缓存场景

Redis 常用于缓存系统,以提高数据读取速度并减轻数据库的负载。它可以存储经常访问的数据,如热门文章、用户信息、会话数据等。支持设置过期时间(TTL),自动清理过期的数据。


消息队列

Redis 的 List 结构和 Pub/Sub 功能可以用来实现消息队列,支持生产者和消费者模式。可以用于任务队列、异步处理等场景。


会话存储

Redis 被广泛用于会话管理,特别是在分布式系统中,可以共享会话数据。

由于其高性能和持久化选项,可以确保会话数据的快速读取和安全存储。


排行榜/计数器

Redis 的 Sorted Set 结构可以轻松实现排行榜功能。

适用于社交网络中的点赞数、游戏中的得分排名等场景。


实时分析

Redis 可以用于实时数据分析和统计,如网站的实时访问量统计、应用性能监控等。

通过其快速的读写性能,可以实时更新和查询统计数据。


地理位置存储

Redis 的 Geospatial 功能可以存储和操作地理位置信息,适用于位置查询、距离计算等场景。

可用于地图服务、物流跟踪等应用。


分布式锁

Redis 可以用于实现分布式锁,保证在分布式系统中的数据一致性。

通过 SET NX 和 EXPIRE 命令,可以创建具有超时机制的锁。


发布/订阅(Pub/Sub)系统

Redis 提供了发布/订阅消息模式,适用于实时消息传递和通知系统。

适用于聊天室、实时推送等场景。


数据结构存储

Redis 支持多种复杂数据结构,如字符串、哈希、列表、集合、有序集合等,可以满足多种数据存储需求。

适用于需要快速访问和操作复杂数据结构的场景。


流处理

Redis 5.0 引入了 Stream 数据结构,用于处理实时数据流。

适用于日志收集、事件溯源等场景。



相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
SQL 分布式计算 大数据
MaxCompute 聚簇优化推荐简介
在大数据计算中,Shuffle 是资源消耗最大的环节之一。MaxCompute 提供聚簇优化推荐功能,通过调整 Cluster 表结构,有效减少 Shuffle 量,显著提升作业性能并节省计算资源。实际案例显示,该功能可帮助用户每日节省数 PB 的 Shuffle 数据量及数千 CU 的计算成本。
271 0
|
9月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
714 3
|
11月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
2069 29
|
9月前
|
存储 NoSQL Java
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
436 0
|
缓存 NoSQL 架构师
Redis批量查询的四种技巧,应对高并发场景的利器!
在高并发场景下,巧妙地利用缓存批量查询技巧能够显著提高系统性能。 在笔者看来,熟练掌握细粒度的缓存使用是每位架构师必备的技能。因此,在本文中,我们将深入探讨 Redis 中批量查询的一些技巧,希望能够给你带来一些启发。
Redis批量查询的四种技巧,应对高并发场景的利器!
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
709 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
580 8
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
303 6

热门文章

最新文章