大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop

HDFS

MapReduce

Hive

Flume

Sqoop

Zookeeper

HBase

Redis

章节内容

上一节我们完成了:


HBase Maven工程 POM引入

HBase JavaAPI

HBase Java实现 增、删、改、查

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

Redis简介

Redis(Remote Dictionary Server)远程字典服务。是用C语言开发的。

官方网站是:

http://redis.io/

Redis 数据类型

其中一共五种数据类型:


字符串类型

散列类型

列表类型

集合类型

有序集合类型

缓存场景

DB缓存

DB缓存,减轻DB服务器压力。

一般情况下数据存在数据库中,应用程序直接操作数据库。

当访问量上万,数据库压力增大,可以采取的方案有:


读写分离

分库分表

数据库的文件是在硬盘中,与内存做交换。

对于大量瞬时访问,会导致频繁IO而无法工作。


Session分离

传统的Session是由Tomcat自行维护和管理,在集群的Tomcat环境中,不同的Tomcat会有各自的Session。


各个Tomcat之间复制Session,性能损耗

不能保证Tomcat之间的Session实时同步

可以将登录后的Session信息存入 Redis 中,这样多个Tomcat服务器可以共享Session信息。

具体的整体架构图是:

分布式锁

一般锁是多线程 锁,但是在多个进程中,需要上锁的话,就需要分布式锁。


读写模式

旁路模式

Cache Aside Pattern 旁路缓存,是最经典的缓存+数据库读写模式

具体的方案是:读的时候,先读缓存,缓存没有再读数据库,读出后写入缓存。

代码逻辑上如下图:

当我们要更新数据的时候:先更新数据库,再删除缓存。

穿透模式

Read/Write Through Pattern 穿透读/穿透写 直接读/直接写 模式。


Read Through Pattern

Write Through Pattern

缓存模式

Write Behind Caching Pattern 只更新缓存模式

应用程序只更新缓存,缓存通过异步的方式将数据批量整合后写入DB。

不能实时同步数据,甚至宕机会丢数据。


Redis 适用场景

缓存使用,减轻DB压力

DB使用 用于临时存储数据

解决分布式场景下Session分离的问题

任务队列(秒杀,抢红包)乐观锁等等

应用排行榜

签到 bitmap

冷热数据交换

等等

缓存场景

Redis 常用于缓存系统,以提高数据读取速度并减轻数据库的负载。它可以存储经常访问的数据,如热门文章、用户信息、会话数据等。支持设置过期时间(TTL),自动清理过期的数据。


消息队列

Redis 的 List 结构和 Pub/Sub 功能可以用来实现消息队列,支持生产者和消费者模式。可以用于任务队列、异步处理等场景。


会话存储

Redis 被广泛用于会话管理,特别是在分布式系统中,可以共享会话数据。

由于其高性能和持久化选项,可以确保会话数据的快速读取和安全存储。


排行榜/计数器

Redis 的 Sorted Set 结构可以轻松实现排行榜功能。

适用于社交网络中的点赞数、游戏中的得分排名等场景。


实时分析

Redis 可以用于实时数据分析和统计,如网站的实时访问量统计、应用性能监控等。

通过其快速的读写性能,可以实时更新和查询统计数据。


地理位置存储

Redis 的 Geospatial 功能可以存储和操作地理位置信息,适用于位置查询、距离计算等场景。

可用于地图服务、物流跟踪等应用。


分布式锁

Redis 可以用于实现分布式锁,保证在分布式系统中的数据一致性。

通过 SET NX 和 EXPIRE 命令,可以创建具有超时机制的锁。


发布/订阅(Pub/Sub)系统

Redis 提供了发布/订阅消息模式,适用于实时消息传递和通知系统。

适用于聊天室、实时推送等场景。


数据结构存储

Redis 支持多种复杂数据结构,如字符串、哈希、列表、集合、有序集合等,可以满足多种数据存储需求。

适用于需要快速访问和操作复杂数据结构的场景。


流处理

Redis 5.0 引入了 Stream 数据结构,用于处理实时数据流。

适用于日志收集、事件溯源等场景。



相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
11月前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
719 8
|
5月前
|
存储 Java 大数据
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
|
7月前
|
NoSQL 调度 Redis
分布式锁—5.Redisson的读写锁
Redisson读写锁(RedissonReadWriteLock)是Redisson提供的一种分布式锁机制,支持读锁和写锁的互斥与并发控制。读锁允许多个线程同时获取,适用于读多写少的场景,而写锁则是独占锁,确保写操作的互斥性。Redisson通过Lua脚本实现锁的获取、释放和重入逻辑,并利用WatchDog机制自动续期锁的过期时间,防止锁因超时被误释放。 读锁的获取逻辑通过Lua脚本实现,支持读读不互斥,即多个线程可以同时获取读锁。写锁的获取逻辑则确保写写互斥和读写互斥,即同一时间只能有一个线程获取写锁,
376 17
|
11月前
|
存储 缓存 安全
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
265 6
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
223 4
【赵渝强老师】基于Redis的旁路缓存架构
|
存储 运维 NoSQL
分布式读写锁的奥义:上古世代 ZooKeeper 的进击
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
318 11
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
186 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。对象如用户、账号、商品等,通过唯一ID记录其相关事件,如操作日志、交易记录等。这种模式下的统计任务包括无序计算(如交易次数、通话时长)和有序计算(如漏斗分析、连续交易检测)。尽管SQL在处理无序计算时表现尚可,但在有序计算中却显得力不从心,主要原因是其对跨行记录运算的支持较弱,且大表JOIN和大结果集GROUP BY的性能较差。相比之下,SPL语言通过强化离散性和有序集合的支持,能够高效地处理这类计算任务,避免了大表JOIN和复杂的GROUP BY操作,从而显著提升了计算效率。
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。这种模式涉及对象(如用户、账户、商品等)及其相关的事件记录,通过这些事件数据可以进行各种统计分析,如漏斗分析、交易次数统计等。然而,SQL 在处理这类任务时表现不佳,特别是在有序计算方面。SPL 作为一种强化离散性和有序集合的语言,能够高效地处理这类计算,避免了大表 JOIN 和大结果集 GROUP BY 的性能瓶颈。通过按 ID 排序和分步计算,SPL 能够显著提高计算效率,并支持实时数据处理。
|
分布式计算 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
246 5