云原生数据仓库产品使用合集之在ADB中,如何将源数据的多表(数据结构一致)汇总到一张表

简介: 阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。

问题一:python读取adb库表限制3000条,有没有什么sdk可以方便接入开发?

python读取adb库表限制3000条,有没有什么sdk可以方便接入开发?



参考答案:

"可以看一下这个文档:https://help.aliyun.com/zh/analyticdb-for-mysql/user-guide/python?spm=a2c4g.11174283.0.i1

这个文档主要是描述的是RDS数据源入湖,目标端是OSS;我们理解您的诉求是直接写到ADB内表,用DTS可以满足诉求。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/569865



问题二:ADB是否支持源数据的多表(数据结构一致)汇总到一张表?

"我们准备购买ADB湖仓版,我们现在有个问题想请教下:

我们是一家saas型的公司,我们的订单表是根据一个租户一个表来动态生成的,都是物理表,存储于mysql中,以""order_{租户标识}""来创建的租户订单表,

比如:order_111111,order_222,.....order_16424544545

但是这样设计在同步到数仓(maxcompute)的时候,会存在上千张表任务,所以我们想将order的数据先同步到ADB 形成一张大表,然后数仓那边抽取ADB的这个order大表数据。

现在有两个疑问点:

1.ADB是否支持源数据的多表(数据结构一致)汇总到一张表?

2.在新增一个租户之后,源端会新增一个""order_{租户id}""的表,此表是否可以自动同步到ADB的那张大表中?"



参考答案:

"通过DTS,可以支持多表归并到ADB,将源库中多个表结构相同的表合并到目标库的同一个数据表中。

https://www.alibabacloud.com/help/zh/dts/user-guide/enable-multi-table-merging

看看能不能符合你们要求。

  1. DTS多表合并支持源端多张表同步到一张ADB表(源端表结构相同)。
  2. 动态增加表,可以看看DTS的OpenAPI,通过修改同步任务的方式来主动添加源和目的的映射关系。
    https://help.aliyun.com/zh/dts/developer-reference/api-modifydtsjob



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/569866



问题三:ADB MySQL湖仓版文档中描述的向量检索这块的性能是在什么资源规格下才能达到?

ADB MySQL湖仓版文档中描述的向量检索这块的性能是在什么资源规格下才能达到?



参考答案:

ADB MySQL湖仓版的向量检索功能依赖于其内置的向量搜索引擎,该引擎基于Faiss库实现。Faiss是一个高性能的向量搜索库,它可以在大量的数据上实现快速的近似最近邻搜索。

关于向量检索的性能,这主要取决于以下几个因素:

  1. 数据规模:Faiss的性能与数据规模有关。对于小规模的数据,Faiss可以实现即时的搜索。但对于大规模的数据,可能需要一些时间来完成搜索。
  2. 硬件资源:Faiss的性能也与硬件资源有关。一般来说,更多的CPU核心和更大的内存容量可以提高Faiss的搜索性能。
  3. 索引质量:Faiss的性能还与索引的质量有关。一个好的索引可以帮助Faiss更快地找到结果。
  4. 查询模式:Faiss的性能也与查询模式有关。不同的查询模式可能会产生不同的性能结果。

具体的性能表现需要根据实际的使用环境和条件进行测试。你可以参考ADB MySQL湖仓版的官方文档,或者在实际的系统中进行测试,以获取更准确的性能数据。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570346



问题四:从数仓版转ADB MySQL湖仓版有啥低成本的方案么?数据传输和数据迁移 都不支持?

从数仓版转ADB MySQL湖仓版有啥低成本的方案么?数据传输和数据迁移 都不支持?



参考答案:

目前在控制台操作,即可从数仓版变配到湖仓版,集群规模不变,费用不变:https://help.aliyun.com/zh/analyticdb-for-mysql/user-guide/change-a-cluster-from-data-warehouse-edition-to-data-lakehouse-edition?spm=a2c4g.11186623.0.0.179714c0xz9qiQ 



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570347



问题五:数仓可以直接升级到ADB MySQL湖仓版?升级大概需要多久,会影响业务?

数仓可以直接升级到ADB MySQL湖仓版?升级大概需要多久,会影响业务?



参考答案:

支持的。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570348

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
|
5月前
|
存储 机器学习/深度学习 数据采集
一文讲透数据仓库、数据湖、数据海的区别
企业常因数据架构不清导致报表延迟、数据矛盾、利用困难。核心解法是构建数据仓库(高效分析)、数据湖(灵活存储原始数据)和数据海(全局集成)。三者各有适用场景,需根据业务需求选择,常共存互补,助力数据驱动决策。
一文讲透数据仓库、数据湖、数据海的区别
|
6月前
|
存储 数据管理 数据库
数据字典是什么?和数据库、数据仓库有什么关系?
在数据处理中,你是否常困惑于字段含义、指标计算或数据来源?数据字典正是解答这些问题的关键工具,它清晰定义数据的名称、类型、来源、计算方式等,服务于开发者、分析师和数据管理者。本文详解数据字典的定义、组成及其与数据库、数据仓库的关系,助你夯实数据基础。
数据字典是什么?和数据库、数据仓库有什么关系?
|
7月前
|
存储 BI API
一文读懂数据中台和数据仓库的区别
本文深入解析了“数据中台”与“数据仓库”的区别,从定义、功能、架构设计、数据处理、应用场景等多个维度进行对比,帮助企业更清晰地理解二者的核心差异与适用场景。数据仓库重在存储与分析历史数据,服务于高层决策;数据中台则强调数据的实时处理与服务化输出,直接赋能一线业务。文章还结合企业规模、业务需求与技术能力,给出了选型建议,助力企业在数字化转型中做出更科学的选择。
1391 11
|
存储 数据管理 BI
揭秘数据仓库的奥秘:数据究竟如何层层蜕变,成为企业决策的智慧源泉?
【8月更文挑战第26天】数据仓库是企业管理数据的关键部分,其架构直接影响数据效能。通过分层管理海量数据,提高处理灵活性及数据一致性和安全性。主要包括:数据源层(原始数据)、ETL层(数据清洗与转换)、数据仓库层(核心存储与管理)及数据服务层(提供分析服务)。各层协同工作,支持高效数据管理。未来,随着技术和业务需求的变化,数仓架构将持续优化。
279 3
|
存储 人工智能 关系型数据库
AnalyticDB PostgreSQL版:Data+AI 时代的企业级数据仓库
AnalyticDB PostgreSQL版是面向Data+AI时代的企业级数据仓库,涵盖产品架构、核心技术、客户案例及功能发布四大部分。产品架构包括数据分析和AI/ML的存储与计算优化;核心技术涉及高性能实时引擎Beam、向量化执行引擎Laser及优化器Orca;客户案例展示了丝芙兰和领跑汽车的应用;新功能如pgsearch全文检索和In-Database AI/ML进一步提升了性能与易用性。
434 0
|
存储 机器学习/深度学习 数据管理
数据技术的进化史:从数据仓库到数据中台再到数据飞轮
数据技术的进化史:从数据仓库到数据中台再到数据飞轮
|
机器学习/深度学习 消息中间件 搜索推荐
【数据飞轮】驱动业务增长的高效引擎 —从数据仓库到数据中台的技术进化与实战
在数据驱动时代,企业逐渐从数据仓库过渡到数据中台,并进一步发展为数据飞轮。本文详细介绍了这一演进路径,涵盖数据仓库的基础存储与查询、数据中台的集成与实时决策,以及数据飞轮的自动化增长机制。通过代码示例展示如何在实际业务中运用数据技术,实现数据的最大价值,推动业务持续优化与增长。
|
Java Spring 监控
Spring Boot Actuator:守护你的应用心跳,让监控变得触手可及!
【8月更文挑战第31天】Spring Boot Actuator 是 Spring Boot 框架的核心模块之一,提供了生产就绪的特性,用于监控和管理 Spring Boot 应用程序。通过 Actuator,开发者可以轻松访问应用内部状态、执行健康检查、收集度量指标等。启用 Actuator 需在 `pom.xml` 中添加 `spring-boot-starter-actuator` 依赖,并通过配置文件调整端点暴露和安全性。Actuator 还支持与外部监控工具(如 Prometheus)集成,实现全面的应用性能监控。正确配置 Actuator 可显著提升应用的稳定性和安全性。
830 1
|
存储 数据管理 大数据
从数据仓库到数据中台再到数据飞轮:社交媒体的数据技术进化史
从数据仓库到数据中台再到数据飞轮:社交媒体的数据技术进化史
374 0

热门文章

最新文章

相关产品

  • 云原生数据仓库 AnalyticDB PostgreSQL版