零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究

这篇论文探讨了置换对称性(permutation symmetry)如何在 SGD 解决方案的线性模式连接中发挥重要作用。

深度学习能够取得如此成就,得益于其能够相对轻松地解决大规模非凸优化问题。尽管非凸优化是 NP 困难的,但一些简单的算法,通常是随机梯度下降(SGD)的变体,它们在实际拟合大型神经网络时表现出惊人的有效性。

本文中,来自华盛顿大学的多位学者撰文《 Git Re-Basin: Merging Models modulo Permutation Symmetries 》,他们研究了在深度学习中,SGD 算法在高维非凸优化问题上的不合理有效性。他们受到三个问题的启发:

1. 为什么 SGD 在高维非凸深度学习损失 landscapes 的优化中表现良好,而在其他非凸优化设置中,如 policy 学习、轨迹优化和推荐系统的稳健性明显下降 ?


2. 局部极小值在哪里?在初始化权值和最终训练权值之间进行线性插值时,为什么损失会平滑、单调地减小?


3. 两个独立训练的模型,它们具有不同的随机初始化和数据批处理顺序,为何会实现几乎相同的性能?此外,为什么它们的训练损失曲线看起来一样



论文地址:https://arxiv.org/pdf/2209.04836.pdf


本文认为:在模型训练中存在一些不变性,这样一来才会有不同的训练表现出几乎相同的性能。


为什么会这样呢?2019 年,Brea 等人注意到神经网络中的隐藏单元具有置换对称性。简单的说就是:我们可以交换网络中隐藏层的任意两个单元,而网络功能将保持不变。2021 年 Entezari 等人推测,这些置换对称可能允许我们在权值空间中线性连接点,而不损害损失。


下面我们以论文作者之一的举例来说明文章主旨,这样大家会更清楚。

假如说你训练了一个 A 模型,你的朋友训练了一个 B 模型,这两个模型训练数据可能不同。没关系,使用本文提出的 Git Re-Basin,你能在权值空间合并这两个模型 A+B,而不会损害损失。



论文作者表示,Git Re-Basin 可适用于任何神经网络(NN),他们首次演示了在两个独立训练(没有预先训练)的模型(ResNets)之间,可以零障碍的线性连通。


他们发现,合并能力是 SGD 训练的一个属性,在初始化时合并是不能工作的,但是会发生相变,因此随着时间的推移合并将成为可能。



他们还发现,模型宽度与可合并性密切相关,即越宽越好。



此外,并非所有架构都能合并:VGG 似乎比 ResNets 更难合并。


这种合并方法还有其他优点,你可以在不相交和有偏差的数据集上训练模型,然后在权值空间中将它们合并在一起。例如,你有一些数据在美国,一些在欧盟。由于某些原因,不能混合数据。你可以先训练单独的模型,然后合并权重,最后泛化到合并的数据集。



因此,在不需要预训练或微调的情况下可以混合训练过的模型。作者表示自己很想知道线性模式连接和模型修补的未来发展方向,可能会应用到联邦学习、分布式训练以及深度学习优化等领域。


最后还提到,章节 3.2 中的权重匹配算法只需 10 秒左右即可运行,所以节省了大量时间。论文第 3 章也介绍了 A 模型与 B 模型单元匹配的三种方法,对匹配算法还不清楚的小伙伴,可以查看原论文。


网友评论及作者解疑


这篇论文在推特上引发了热议,PyTorch 联合创始人 Soumith Chintala 表示如果这项研究可以迁移到更大的设置,则它可以实现的方向会更棒。合并两个模型(包括权重)可以扩展 ML 模型开发,并可能在开源的共同开发模型中发挥巨大作用。



另有人认为如果置换不变性能够这样高效地捕捉大部分等价性,它将为神经网络的理论研究提供启发。



论文一作、华盛顿大学博士 Samuel Ainsworth 也解答了网友提出的一些问题。


首先有人问,「论文中是否有关于在训练中针对独特 basin 的任何提示?如果有一种方法可以做到对置换进行抽象,那么训练速度可能会更快。」


Ainsworth 回复称,这点自己没有想到。他真的希望能够以某种方式实现更快地训练,但目前为止已被证明非常困难。问题在于 SGD 本质上是一种局部搜索,因此利用高阶几何并不是那么容易。也许分布式训练是一种可行的方法。



还有人问是否适用于 RNN 和 Transformers?Ainsworth 表示原则上适用,但他还没有对此进行实验。时间会证明一切。



最后有人提出,「这看起来对分布式训练『成真』非常重要?难道 DDPM(去噪扩散概率模型)不使用 ResNet 残差块吗?」


Ainsworth 回复称,虽然他自己对 DDPM 不是很熟悉,但直言不讳表示将它用于分布式训练将非常令人兴奋。


相关文章
|
18天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
46 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
11天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
59 1
|
16天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
|
2月前
|
机器学习/深度学习 自然语言处理 数据可视化
【由浅到深】从神经网络原理、Transformer模型演进、到代码工程实现
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
127 11
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
101 2
|
2月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
285 1
|
3月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
158 4
网络协议与IO模型
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
118 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议

热门文章

最新文章