零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 零障碍合并两个模型,大型ResNet模型线性连接只需几秒,神经网络启发性新研究

这篇论文探讨了置换对称性(permutation symmetry)如何在 SGD 解决方案的线性模式连接中发挥重要作用。

深度学习能够取得如此成就,得益于其能够相对轻松地解决大规模非凸优化问题。尽管非凸优化是 NP 困难的,但一些简单的算法,通常是随机梯度下降(SGD)的变体,它们在实际拟合大型神经网络时表现出惊人的有效性。

本文中,来自华盛顿大学的多位学者撰文《 Git Re-Basin: Merging Models modulo Permutation Symmetries 》,他们研究了在深度学习中,SGD 算法在高维非凸优化问题上的不合理有效性。他们受到三个问题的启发:

1. 为什么 SGD 在高维非凸深度学习损失 landscapes 的优化中表现良好,而在其他非凸优化设置中,如 policy 学习、轨迹优化和推荐系统的稳健性明显下降 ?


2. 局部极小值在哪里?在初始化权值和最终训练权值之间进行线性插值时,为什么损失会平滑、单调地减小?


3. 两个独立训练的模型,它们具有不同的随机初始化和数据批处理顺序,为何会实现几乎相同的性能?此外,为什么它们的训练损失曲线看起来一样



论文地址:https://arxiv.org/pdf/2209.04836.pdf


本文认为:在模型训练中存在一些不变性,这样一来才会有不同的训练表现出几乎相同的性能。


为什么会这样呢?2019 年,Brea 等人注意到神经网络中的隐藏单元具有置换对称性。简单的说就是:我们可以交换网络中隐藏层的任意两个单元,而网络功能将保持不变。2021 年 Entezari 等人推测,这些置换对称可能允许我们在权值空间中线性连接点,而不损害损失。


下面我们以论文作者之一的举例来说明文章主旨,这样大家会更清楚。

假如说你训练了一个 A 模型,你的朋友训练了一个 B 模型,这两个模型训练数据可能不同。没关系,使用本文提出的 Git Re-Basin,你能在权值空间合并这两个模型 A+B,而不会损害损失。



论文作者表示,Git Re-Basin 可适用于任何神经网络(NN),他们首次演示了在两个独立训练(没有预先训练)的模型(ResNets)之间,可以零障碍的线性连通。


他们发现,合并能力是 SGD 训练的一个属性,在初始化时合并是不能工作的,但是会发生相变,因此随着时间的推移合并将成为可能。



他们还发现,模型宽度与可合并性密切相关,即越宽越好。



此外,并非所有架构都能合并:VGG 似乎比 ResNets 更难合并。


这种合并方法还有其他优点,你可以在不相交和有偏差的数据集上训练模型,然后在权值空间中将它们合并在一起。例如,你有一些数据在美国,一些在欧盟。由于某些原因,不能混合数据。你可以先训练单独的模型,然后合并权重,最后泛化到合并的数据集。



因此,在不需要预训练或微调的情况下可以混合训练过的模型。作者表示自己很想知道线性模式连接和模型修补的未来发展方向,可能会应用到联邦学习、分布式训练以及深度学习优化等领域。


最后还提到,章节 3.2 中的权重匹配算法只需 10 秒左右即可运行,所以节省了大量时间。论文第 3 章也介绍了 A 模型与 B 模型单元匹配的三种方法,对匹配算法还不清楚的小伙伴,可以查看原论文。


网友评论及作者解疑


这篇论文在推特上引发了热议,PyTorch 联合创始人 Soumith Chintala 表示如果这项研究可以迁移到更大的设置,则它可以实现的方向会更棒。合并两个模型(包括权重)可以扩展 ML 模型开发,并可能在开源的共同开发模型中发挥巨大作用。



另有人认为如果置换不变性能够这样高效地捕捉大部分等价性,它将为神经网络的理论研究提供启发。



论文一作、华盛顿大学博士 Samuel Ainsworth 也解答了网友提出的一些问题。


首先有人问,「论文中是否有关于在训练中针对独特 basin 的任何提示?如果有一种方法可以做到对置换进行抽象,那么训练速度可能会更快。」


Ainsworth 回复称,这点自己没有想到。他真的希望能够以某种方式实现更快地训练,但目前为止已被证明非常困难。问题在于 SGD 本质上是一种局部搜索,因此利用高阶几何并不是那么容易。也许分布式训练是一种可行的方法。



还有人问是否适用于 RNN 和 Transformers?Ainsworth 表示原则上适用,但他还没有对此进行实验。时间会证明一切。



最后有人提出,「这看起来对分布式训练『成真』非常重要?难道 DDPM(去噪扩散概率模型)不使用 ResNet 残差块吗?」


Ainsworth 回复称,虽然他自己对 DDPM 不是很熟悉,但直言不讳表示将它用于分布式训练将非常令人兴奋。


相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
13天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
40 2
|
13天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
36 1
|
2月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
75 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
24天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
73 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
开发者
什么是面向网络的IO模型?
【10月更文挑战第6天】什么是面向网络的IO模型?
22 3
|
2月前
|
数据挖掘 开发者
网络IO模型
【10月更文挑战第6天】网络IO模型
42 3
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具

热门文章

最新文章

下一篇
无影云桌面