当被大模型输入技术内功,数字人「文画两开花」,还在手机里随时陪你聊天(2)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 当被大模型输入技术内功,数字人「文画两开花」,还在手机里随时陪你聊天

全新内容生产方式 ——AIGC

从对话到写作、作画,度晓晓俨然成为了数字人中的「多面手」。一方面,在百度文心大模型整合的多模态交互、3D 建模、机器翻译、语音识别等多项技术的助力下,度晓晓已经在百度 APP 端内实现了生动拟人智能的互动交流。另一方面,由于文心大模型超强的理解和生成能力,度晓晓的创作能力被充分地挖掘和展现出来。

可以这样说,此时的度晓晓已经脱离了传统意义上的 CG 数字人,有了「内涵」,而这些恰好契合了当下备受关注的新型内容生产方式 ——AIGC,即通过人工智能技术自动生产内容。继 UGC、PGC 之后,大模型赋能下的 AIGC 已经成为了过去一年来百度 AI 技术加速落地的着陆点。

不仅如此,度晓晓近来展现的编曲、互动交流、写作和作画,都只是百度大模型技术支撑下在 AIGC 层面的牛刀小试。随着底层 AI 大模型技术的不断完善,AIGC 的可用性和适用性势必会迎来提升和扩展,更多内容生产领域会被发掘出来。

像度晓晓这样的数字人,落地场景也就不再局限于单一的端内互动或图文创作,未来的舞台可以遍布影视、金融、文旅等各个领域,「天空才是她的极限」。

让大模型不再流于参数,终究还是要落地,实现应用价值

在近年来深度学习领域掀起这波「练大模型」潮流之际,百度持续发力文心大模型也是顺势而为,力争在 AI 巨头的竞争中始终保持领先优势。就之前的趋势而言,追逐参数的多、模型的大似乎在国内外巨头们之间形成了一种默契。

从 GPT-3 开始,千亿、万亿级大模型纷至沓来,如国外谷歌 1.6 万亿参数大模型 Switch Transformer、微软联合英伟达的 5300 亿参数模型 MT-NLG,国内浪潮 2457 亿参数单体模型源 1.0、阿里达摩院 10 万亿参数多模态大模型 M6。

慢慢地,当堆参数及其带来的巨额训练成本不再那么吸引 AI 巨头们时,如何使自身大模型更广泛地落地成为了他们新的目标。作为从 2019 年就开始积累预训练技术和大模型的 AI 头雁,百度在探索大模型过程中修炼了自己的武功秘诀 —— 知识增强

2021 年 12 月,百度发布全球首个知识增强千亿大模型鹏城 - 百度・文心发布,它的参数量达到了 2600 亿,是一个融合了 NLP 和 NLG 的全能模型。当时,百度产业级知识增强大模型文心全景图首次亮相。
今年 5 月的 Wave Summit 峰会上,百度聚焦「前沿大模型技术如何匹配真实场景中的方方面面要求」这一问题,提出了大模型产业落地的三个关键路径,包括更适配应用场景的模型体系、更有效的工具和方法以及更开放的生态。方方面面无不呼应着落地。

同时,文心大模型除了迎来新成员之外,还可以通过百度飞桨的一系列大模型开发套件、大模型API和集成文心大模型的飞桨企业版EasyDL和BML开发平台,全面释放使用效能,进一步降低应用门槛。在生态和社区层面,构建文心・旸谷社区,将大模型能力开放给普通开发者,人人皆可触碰 AI 的魅力。文心大模型的个人、企业开发者数量已超过 6 万人

文心・旸谷社区地址:https://wenxin.baidu.com/younger

全新升级的文心大模型在知识增强和产业级这两方面得到了进一步加强,10 个大模型新成员中的国网 - 百度・文心和浦发 - 百度・文心就分别将文心大模型的能力输入到了能源电力行业和金融服务行业,这也预示着文心大模型与行业的联系越来越紧密。

目前,以知识增强和产业级为指导的文心大模型已经逐渐在百度内外「兑现」了自己的能力。

在百度内部,搜索、信息流、百度地图等场景中可以看到文心大模型的身影,如上文在百度 APP 端智能互动的度晓晓以及小度智能屏等;在百度外部,文心大模型在工业、能源、金融、教育、通信、媒体、医疗等各行各业都有了实战场地,如工业领域的零部件质量检测、金融行业的合同信息抽取等,在赋能行业中真正实现了自身的应用价值。

度晓晓最近频频出圈,让更多人看到了其背后文心大模型的技术内驱力。然而,未来文心大模型的落地场景不应受限。

一方面,文心大模型可以按照能源行业国网 - 百度・文心和金融行业浦发 - 百度・文心的模式继续推出更多行业大模型,持续推进大模型在各行各业的深度应用,满足多样化场景任务需求。

另一方面,在 AI for Science 领域,文心大模型中已经有了两个生物计算大模型(HELIX-GEM 和 HELIX-Fold),未来同样有可能在数学、物理、化学等更多基础学科领域构建专属大模型。这样做可以持续探索大模型在科学领域解决问题的巨大潜力,更全面地推进 AI 与 Science 的融合。

大模型成为行业热点已经有两三年时间,在百度看来,2022 年是大模型产业落地的关键年。不管是度晓晓这一系列的创意应用,还是深入到更广泛的行业和前沿技术领域,百度势必会抓住大模型发展的这一机遇,在产业化落地的融合创新之路上继续又稳又快地走下去。

参考链接:https://arxiv.org/pdf/2109.09519.pdfhttps://arxiv.org/pdf/2006.16779.pdfhttps://aclanthology.org/2020.acl-main.9.pdfhttps://www.jiqizhixin.com/articles/2022-05-20-8https://wenxin.baidu.com/wenxin/modelbasedetail/plato/https://wenxin.baidu.com/wenxin/modelbasedetail/ernie_vilg/https://wenxin.baidu.com/wenxin/modelbasedetail/ernie3_zeus/

相关文章
|
24天前
|
机器学习/深度学习 数据采集 人工智能
Phi-3 技术报告:手机本地运行的高能力语言模型
Phi-3系列模型通过高质量数据训练与架构创新,实现小体积、高性能。38亿参数的phi-3-mini在手机端可达GPT-3.5水平,支持长上下文、多模态与高效推理,推动AI普惠化。
194 1
|
18天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。
|
3月前
|
人工智能 自然语言处理 搜索推荐
企业客户服务效率低、体验差,如何通过大模型技术改善?一文了解面向客户服务全场景的行业大模型的3大应用方向
本文三桥君探讨了大模型技术在客户服务领域的应用与实践。从架构设计出发,详细解析了面向客户、客服和运营三大场景的智能功能模块,包括业务咨询、情感关怀、智能点选、知识采编等12项核心功能。AI产品专家三桥君指出,通过行业大模型定制、多源数据整合等技术手段,企业可实现客户服务的智能化升级,显著提升客户体验和运营效率。
206 0
|
13天前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
16天前
|
机器学习/深度学习 人工智能 物联网
# 大模型优化与压缩技术:2025年的实践与突破
2025年,随着大语言模型的规模和复杂度不断提升,模型优化与压缩技术已成为AI产业落地的关键瓶颈和研究热点。根据最新统计,顶级大语言模型的参数规模已突破万亿级别,如DeepSeek-R1模型的6710亿参数规模,这带来了前所未有的计算资源需求和部署挑战。在这种背景下,如何在保持模型性能的同时,降低计算成本、减少内存占用、提升推理速度,已成为学术界和产业界共同关注的核心问题。
|
22天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
358 6