当被大模型输入技术内功,数字人「文画两开花」,还在手机里随时陪你聊天(2)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 当被大模型输入技术内功,数字人「文画两开花」,还在手机里随时陪你聊天

全新内容生产方式 ——AIGC

从对话到写作、作画,度晓晓俨然成为了数字人中的「多面手」。一方面,在百度文心大模型整合的多模态交互、3D 建模、机器翻译、语音识别等多项技术的助力下,度晓晓已经在百度 APP 端内实现了生动拟人智能的互动交流。另一方面,由于文心大模型超强的理解和生成能力,度晓晓的创作能力被充分地挖掘和展现出来。

可以这样说,此时的度晓晓已经脱离了传统意义上的 CG 数字人,有了「内涵」,而这些恰好契合了当下备受关注的新型内容生产方式 ——AIGC,即通过人工智能技术自动生产内容。继 UGC、PGC 之后,大模型赋能下的 AIGC 已经成为了过去一年来百度 AI 技术加速落地的着陆点。

不仅如此,度晓晓近来展现的编曲、互动交流、写作和作画,都只是百度大模型技术支撑下在 AIGC 层面的牛刀小试。随着底层 AI 大模型技术的不断完善,AIGC 的可用性和适用性势必会迎来提升和扩展,更多内容生产领域会被发掘出来。

像度晓晓这样的数字人,落地场景也就不再局限于单一的端内互动或图文创作,未来的舞台可以遍布影视、金融、文旅等各个领域,「天空才是她的极限」。

让大模型不再流于参数,终究还是要落地,实现应用价值

在近年来深度学习领域掀起这波「练大模型」潮流之际,百度持续发力文心大模型也是顺势而为,力争在 AI 巨头的竞争中始终保持领先优势。就之前的趋势而言,追逐参数的多、模型的大似乎在国内外巨头们之间形成了一种默契。

从 GPT-3 开始,千亿、万亿级大模型纷至沓来,如国外谷歌 1.6 万亿参数大模型 Switch Transformer、微软联合英伟达的 5300 亿参数模型 MT-NLG,国内浪潮 2457 亿参数单体模型源 1.0、阿里达摩院 10 万亿参数多模态大模型 M6。

慢慢地,当堆参数及其带来的巨额训练成本不再那么吸引 AI 巨头们时,如何使自身大模型更广泛地落地成为了他们新的目标。作为从 2019 年就开始积累预训练技术和大模型的 AI 头雁,百度在探索大模型过程中修炼了自己的武功秘诀 —— 知识增强

2021 年 12 月,百度发布全球首个知识增强千亿大模型鹏城 - 百度・文心发布,它的参数量达到了 2600 亿,是一个融合了 NLP 和 NLG 的全能模型。当时,百度产业级知识增强大模型文心全景图首次亮相。
今年 5 月的 Wave Summit 峰会上,百度聚焦「前沿大模型技术如何匹配真实场景中的方方面面要求」这一问题,提出了大模型产业落地的三个关键路径,包括更适配应用场景的模型体系、更有效的工具和方法以及更开放的生态。方方面面无不呼应着落地。

同时,文心大模型除了迎来新成员之外,还可以通过百度飞桨的一系列大模型开发套件、大模型API和集成文心大模型的飞桨企业版EasyDL和BML开发平台,全面释放使用效能,进一步降低应用门槛。在生态和社区层面,构建文心・旸谷社区,将大模型能力开放给普通开发者,人人皆可触碰 AI 的魅力。文心大模型的个人、企业开发者数量已超过 6 万人

文心・旸谷社区地址:https://wenxin.baidu.com/younger

全新升级的文心大模型在知识增强和产业级这两方面得到了进一步加强,10 个大模型新成员中的国网 - 百度・文心和浦发 - 百度・文心就分别将文心大模型的能力输入到了能源电力行业和金融服务行业,这也预示着文心大模型与行业的联系越来越紧密。

目前,以知识增强和产业级为指导的文心大模型已经逐渐在百度内外「兑现」了自己的能力。

在百度内部,搜索、信息流、百度地图等场景中可以看到文心大模型的身影,如上文在百度 APP 端智能互动的度晓晓以及小度智能屏等;在百度外部,文心大模型在工业、能源、金融、教育、通信、媒体、医疗等各行各业都有了实战场地,如工业领域的零部件质量检测、金融行业的合同信息抽取等,在赋能行业中真正实现了自身的应用价值。

度晓晓最近频频出圈,让更多人看到了其背后文心大模型的技术内驱力。然而,未来文心大模型的落地场景不应受限。

一方面,文心大模型可以按照能源行业国网 - 百度・文心和金融行业浦发 - 百度・文心的模式继续推出更多行业大模型,持续推进大模型在各行各业的深度应用,满足多样化场景任务需求。

另一方面,在 AI for Science 领域,文心大模型中已经有了两个生物计算大模型(HELIX-GEM 和 HELIX-Fold),未来同样有可能在数学、物理、化学等更多基础学科领域构建专属大模型。这样做可以持续探索大模型在科学领域解决问题的巨大潜力,更全面地推进 AI 与 Science 的融合。

大模型成为行业热点已经有两三年时间,在百度看来,2022 年是大模型产业落地的关键年。不管是度晓晓这一系列的创意应用,还是深入到更广泛的行业和前沿技术领域,百度势必会抓住大模型发展的这一机遇,在产业化落地的融合创新之路上继续又稳又快地走下去。

参考链接:https://arxiv.org/pdf/2109.09519.pdfhttps://arxiv.org/pdf/2006.16779.pdfhttps://aclanthology.org/2020.acl-main.9.pdfhttps://www.jiqizhixin.com/articles/2022-05-20-8https://wenxin.baidu.com/wenxin/modelbasedetail/plato/https://wenxin.baidu.com/wenxin/modelbasedetail/ernie_vilg/https://wenxin.baidu.com/wenxin/modelbasedetail/ernie3_zeus/

相关文章
|
2月前
|
传感器 人工智能 搜索推荐
|
1月前
|
算法
VASA-1:实时音频驱动的数字人说话面部视频生成技术
【6月更文挑战第8天】VASA-1是实时音频驱动的数字人面部视频生成技术,能根据输入音频精准生成匹配的面部表情。具备实时性、高准确性和适应性,适用于虚拟主播、在线教育和影视娱乐等领域。简单示例代码展示了其工作原理。尽管面临情感理解和硬件优化等挑战,但随着技术发展,VASA-1有望在更多领域广泛应用,开启生动数字世界的新篇章。
92 5
|
21天前
|
移动开发 开发框架 JavaScript
技术心得记录:手机Web开发框架
技术心得记录:手机Web开发框架
19 0
|
22天前
|
JavaScript
技术心得:根据不同访问设备跳转到PC页面或手机页面
技术心得:根据不同访问设备跳转到PC页面或手机页面
|
2月前
|
编解码 人工智能 自然语言处理
让大模型理解手机屏幕,苹果多模态Ferret-UI用自然语言操控手机
【5月更文挑战第29天】苹果推出Ferret-UI,一个结合图像识别和自然语言处理的多模态大语言模型,允许用户通过自然语言指令操控手机。该系统能适应不同屏幕布局,识别UI元素并执行相应操作,有望变革手机交互方式,提升无障碍体验,并在测试和开发中发挥作用。但需面对屏幕多样性及准确性挑战。[论文链接](https://arxiv.org/pdf/2404.05719.pdf)
63 3
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
【数字人】AIGC技术引领数字人革命:从制作到应用到全景解析
【数字人】AIGC技术引领数字人革命:从制作到应用到全景解析
194 0
|
2月前
|
数据采集 人工智能 自然语言处理
手机可跑,3.8B参数量超越GPT-3.5!微软发布Phi-3技术报告:秘密武器是洗干净数据
【5月更文挑战第16天】微软发布 Phi-3 技术报告,介绍了一个拥有3.8B参数的新语言模型,超越GPT-3.5,成为最大模型之一。 Phi-3 在手机上运行的特性开启了大型模型移动应用新纪元。报告强调数据清洗是关键,通过优化设计实现高效运行。实验显示 Phi-3 在多项NLP任务中表现出色,但泛化能力和数据隐私仍是挑战。该模型预示着AI领域的未来突破。[[论文链接](https://arxiv.org/pdf/2404.14219.pdf)]
40 2
|
2月前
|
存储 iOS开发 流计算
R语言使用Bass模型进行手机市场产品周期预测
R语言使用Bass模型进行手机市场产品周期预测
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
R语言SVM模型文本挖掘分类研究手机评论数据词云可视化
R语言SVM模型文本挖掘分类研究手机评论数据词云可视化
|
2月前
|
机器学习/深度学习 自然语言处理 搜索推荐
手机上0.2秒出图、当前速度之最,谷歌打造超快扩散模型MobileDiffusion
【2月更文挑战第17天】手机上0.2秒出图、当前速度之最,谷歌打造超快扩散模型MobileDiffusion
46 2
手机上0.2秒出图、当前速度之最,谷歌打造超快扩散模型MobileDiffusion