Nature子刊:科学家在类脑芯片上实现类似LSTM的功能,能效高1000倍

简介: Nature子刊:科学家在类脑芯片上实现类似LSTM的功能,能效高1000倍
格拉茨技术大学的计算机科学家在 Nature 子刊上发表的一篇论文表明,他们找到了一种在神经形态芯片上模拟 LSTM 的方案,可以让类脑神经形态芯片上的 AI 算法能效提高约 1000 倍。


随着智能手机的普及,手机游戏也越来越受欢迎。但视频游戏等程序会大量耗电耗能。与 GPU 等标准硬件相比,基于 spike 的神经形态芯片有望实现更节能的深度神经网络(DNN)。但这需要我们理解如何在基于 event 的稀疏触发机制(sparse firing regime)中模拟 DNN,否则神经形态芯片的节能优势就会丧失。

比如说,解决序列处理任务的 DNN 通常使用长 - 短期记忆单元(LSTM),这种单元很难模拟。现在有一项研究模拟了生物神经元,通过放慢每个脉冲后的超极化后电位(AHP)电流,提供了一种有效的解决方案。AHP 电流可以很容易地在支持多节段(multi-compartment)神经元模型的神经形态硬件(例如英特尔的 Loihi 芯片)上实现类似于 LSTM 的功能。



滤波器逼近理论能够解释为什么 AHP 神经元可以模拟长短期记忆网络的功能。这产生了一种高能效的时间序列分类方法,让类脑神经形态芯片上的 AI 算法能效提高约 1000 倍。此外,它为高效执行大型 DNN 提供了基础,以解决有关自然语言处理的问题。研究论文近期发表在《自然 · 机器智能》期刊上。


论文地址:https://www.nature.com/articles/s42256-022-00480-w

曼彻斯特大学的计算机科学家 Steve Furber 评价这项研究称:「这是一项令人印象深刻的工作,可能给复杂 AI 算法(例如语言翻译、自动驾驶)的性能带来巨大飞跃。」

研究动机

AI 程序通常擅长在数据集中找到特定的模式。例如,在图像识别中,AI 算法首先会找到图像清晰的边缘,然后在拼凑出整体图像时记住这些边缘以及图像的所有后续部分。

这种网络的一个共同组成部分是一个被称为 LSTM 的软件单元,它在事物随时间变化时保持一个元素(element)的记忆。例如,图像中的垂直边缘需要保留在内存中,因为软件会确定它是代表数字「4」的一部分还是汽车的门。典型的 AI 系统必须同时跟踪数百个 LSTM 元素。

当前在传统计算机芯片上运行的 LSTM 网络非常准确,但是非常耗电。为了处理信息比特,它们必须首先检索存储数据的各个比特,对其进行操作,然后再将它们送回存储,并一遍又一遍地重复这个过程。

英特尔、IBM 等芯片制造商一直在尝试一种新的芯片设计方式——神经形态芯片。这种芯片处理信息的方式就像大脑中的神经元网络,其中每个神经元接收来自网络中其他神经元的输入,并在总输入超过阈值时触发。

在这种新芯片中,一些相当于神经元的硬件被连接在一起形成网络。AI 程序也依赖于人造神经网络,但在传统计算机中,这些神经元完全由软件定义,需要来回访问存储。

这种神经形态芯片同时处理存储和计算,因此更加节能。但要利用这种架构,计算机科学家需要在新型芯片架构上重新研究如何运行 LSTM 等网络。

这正是来自格拉茨技术大学的计算机科学家 Wolfgang Maass 等研究者的工作重点。他和他的同事试图复刻人脑中的一种记忆存储机制,这种机制由生物神经网络执行,称为超极化后电位 (AHP) 电流。

AHP 神经元放电模式

大脑中的神经元在触发后通常会返回到其基线水平并保持静止,直到它再次接收到超过其阈值的输入而被触发。但在 AHP 网络中,神经元放电一次后,会暂时禁止再次放电,这有助于神经元网络在消耗更少能量的同时保留信息。

Maass 和他的同事将 AHP 神经元放电模式集成到他们的神经形态神经网络软件中,并通过两个标准的 AI 测试运行他们的网络。第一个挑战是让软件在分割成数百个独立像素的图像中识别手写数字「3」。在这个测试中,他们发现,当在英特尔的神经形态 Loihi 芯片上运行时,他们的算法比在传统芯片上运行的基于 LSTM 的图像识别算法的能效高 1000 倍。

在第二项测试中,研究人员给了该网络一个 20 个句子组成的故事,测试它对故事含义的理解。结果,该神经形态装置的效率是传统计算机处理器算法的 16 倍。

Maass 指出,第二次测试是在英特尔第一代 Loihi 芯片的 22 个系列上进行的,这些芯片在相互通信时消耗相对较大的能量。该公司已经推出了第二代 Loihi 芯片,每一个都有更多的神经元,他说这将减少 chip-to-chip 通信需求,从而使软件运行更高效。

目前,神经形态芯片的商业化案例还是凤毛麟角。因此,这项研究的大规模应用可能不会很快出现。但是艾伦研究所的计算神经科学家 Anton Arkhipov 说,先进的 AI 算法(如 Maass 所展示的算法)可以帮助这些芯片获得商业立足点。「至少,这将加速 AI 系统的构建。」

反过来,这又将加速新颖的 AI 应用的出现,如一个更加智能的 AI 数字助理,这个助理不仅可以提示照片中某个人物的名字,还能帮你回忆起你是在哪里认识的这个人,以及你们之间发生了什么故事。

Maass 说,通过整合大脑中的其他神经元放电模式,未来的神经形态装置甚至有一天可以开始探索众多神经元放电模式如何共同产生意识。

原文链接:https://www.science.org/content/article/microchips-mimic-human-brain-could-make-ai-far-more-energy-efficient

相关文章
|
机器学习/深度学习 算法
【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖
【MATLAB第34期】 MATLAB 2023年棕熊算法 BOA-LSTM时间序列预测模型 #含预测未来功能,以及优化结构层数及单双向类型 研究工作量丰富且新颖
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
3月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
144 2
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
5月前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
5月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
108 6
|
5月前
|
机器学习/深度学习 存储 自然语言处理
RNN与LSTM:循环神经网络的深入理解
【6月更文挑战第14天】本文深入探讨RNN和LSTM,两种关键的深度学习模型在处理序列数据时的作用。RNN利用记忆单元捕捉时间依赖性,但面临梯度消失和爆炸问题。为解决此问题,LSTM引入门控机制,有效捕获长期依赖,适用于长序列处理。RNN与LSTM相互关联,LSTM可视为RNN的优化版本。两者在NLP、语音识别等领域有广泛影响,未来潜力无限。
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测

热门文章

最新文章