【Pytorch神经网络实战案例】33 使用BERT模型实现完形填空任务

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 案例:加载Transformers库中的BERT模型,并用它实现完形填空任务,即预测一个句子中缺失的单词。

61f0238bb78e447c87fb94c83b064969.png


1 案例描述


案例:加载Transformers库中的BERT模型,并用它实现完形填空任务,即预测一个句子中缺失的单词。


b1b4533c1b6b44b19bbb1a18701d52e1.png


2 代码实现:使用BERT模型实现完形填空任务


2.1 代码实现:载入词表,并对输入的文本进行分词转化---BERT_MASK.py(第1部分)


import torch
from transformers import BertTokenizer, BertForMaskedLM
# 1.1 载入词表,并对输入的文本进行分词转化
# 加载预训练模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# 输入文本,BERT模型需要特殊词来标定句子:
# [CLS]:标记一个段落的开始。一个段落可以有一个或多个句子,但是只能有一个[CLS]。[CLS]在BERT模型中还会被用作分类任务的输出特征。
# [SEP]:标记一个句子的结束。在一个段落中,可以有多个[SEP]。
text = "[CLS] Who is Li BiGor ? [SEP] Li BiGor is a programmer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# 使用词表对输入文本进行转换。与中文分词有点类似。由于词表中不可能覆盖所有的单词,因此当输入文本中的单词不存在时,系统会使用带有通配符的单间(以“#”开头的单词)将其拆开。
print("词表转化结果:",tokenized_text)
# 词表转化结果:['[CLS]','who','is','li','big','##or','?','[SEP]','li','big','##or','is','a','programmer','[SEP]']


2.2 代码实现:遮蔽单词,并将其转换为索引值---BERT_MASK.py(第2部分)


# 1.2 遮蔽单词,并将其转换为索引值,使用标记字符[MAS]代替输入文本中索引值为8的单词,对“Li”进行遮蔽,并将整个句子中的单词转换为词表中的索引值。
masked_index = 8  # 掩码一个标记,再使用'BertForMaskedLM'预测回来
tokenized_text[masked_index] = '[MASK]' # 标记字符[MASK],是BERT模型中的特殊标识符。在BERT模型的训练过程中,会对输入文本的随机位置用[MASK]字符进行替换,并训练模型预测出[MASK]字符对应的值。
print("句子中的索引:",tokenized_text)
# 句子中的索引:['[CLS]','who','is','li','big','##or','?','[SEP]','[MASK]','big','##or','is','a','programmer','[SEP]']
# 将标记转换为词汇表索引
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# 将输入转换为PyTorch张量
tokens_tensor = torch.tensor([indexed_tokens])
print("句子中的向量:",tokens_tensor)
# 句子中的向量:tensor([[101,2040,2003,5622,2502,2953,1029,102,103,2502,2953,2003,1037,20273,102]])


2.3 代码实现:加载预训练模型,并对遮蔽单词进行预测---BERT_MASK.py(第3部分)


# 1.3 加载预训练模型,并对遮蔽单词进行预测
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# 加载预训练模型 (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased') # 用BertForMaskedLM类加载模型,该类可以对句子中的标记字符[MASK]进行预测。
model.eval()
model.to(device)
# 段标记索引:定义输入的BertForMaskedLM类句子指示参数,用于指示输入文本中的单词是属于第一句还是属于第二句。属于第一句的单词用0来表示(一共8个),属于第二句的单词用1来表示(一共7个)。
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
segments_tensors = torch.tensor([segments_ids]).to(device)
tokens_tensor = tokens_tensor.to(device)
# 预测所有的tokens
with torch.no_grad():
    # 将文本和句子指示参数输入模型进行预测。
    # 输出结果是一个形状为[1,15,30522]的张量。其中,1代表批次个数,15代表输入句子中的15个单词,30522是词表中单词的个数。
    # 模型的结果表示词表中每个单词在句子中可能出现的概率。
    outputs = model(tokens_tensor, token_type_ids=segments_tensors)
predictions = outputs[0]  # [1, 15, 30522]
# 预测结果:从输出结果中取出[MASK]字符对应的预测索引值。
predicted_index = torch.argmax(predictions[0, masked_index]).item()
# 将预测索引值转换为单词。
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
print('预测词为:', predicted_token)
# 预测词为: li


3 代码总览---BERT_MASK.py


import torch
from transformers import BertTokenizer, BertForMaskedLM
# 1.1 载入词表,并对输入的文本进行分词转化
# 加载预训练模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# 输入文本,BERT模型需要特殊词来标定句子:
# [CLS]:标记一个段落的开始。一个段落可以有一个或多个句子,但是只能有一个[CLS]。[CLS]在BERT模型中还会被用作分类任务的输出特征。
# [SEP]:标记一个句子的结束。在一个段落中,可以有多个[SEP]。
text = "[CLS] Who is Li BiGor ? [SEP] Li BiGor is a programmer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# 使用词表对输入文本进行转换。与中文分词有点类似。由于词表中不可能覆盖所有的单词,因此当输入文本中的单词不存在时,系统会使用带有通配符的单间(以“#”开头的单词)将其拆开。
print("词表转化结果:",tokenized_text)
# 词表转化结果:['[CLS]','who','is','li','big','##or','?','[SEP]','li','big','##or','is','a','programmer','[SEP]']
# 1.2 遮蔽单词,并将其转换为索引值,使用标记字符[MAS]代替输入文本中索引值为8的单词,对“Li”进行遮蔽,并将整个句子中的单词转换为词表中的索引值。
masked_index = 8  # 掩码一个标记,再使用'BertForMaskedLM'预测回来
tokenized_text[masked_index] = '[MASK]' # 标记字符[MASK],是BERT模型中的特殊标识符。在BERT模型的训练过程中,会对输入文本的随机位置用[MASK]字符进行替换,并训练模型预测出[MASK]字符对应的值。
print("句子中的索引:",tokenized_text)
# 句子中的索引:['[CLS]','who','is','li','big','##or','?','[SEP]','[MASK]','big','##or','is','a','programmer','[SEP]']
# 将标记转换为词汇表索引
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# 将输入转换为PyTorch张量
tokens_tensor = torch.tensor([indexed_tokens])
print("句子中的向量:",tokens_tensor)
# 句子中的向量:tensor([[101,2040,2003,5622,2502,2953,1029,102,103,2502,2953,2003,1037,20273,102]])
# 1.3 加载预训练模型,并对遮蔽单词进行预测
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# 加载预训练模型 (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased') # 用BertForMaskedLM类加载模型,该类可以对句子中的标记字符[MASK]进行预测。
model.eval()
model.to(device)
# 段标记索引:定义输入的BertForMaskedLM类句子指示参数,用于指示输入文本中的单词是属于第一句还是属于第二句。属于第一句的单词用0来表示(一共8个),属于第二句的单词用1来表示(一共7个)。
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
segments_tensors = torch.tensor([segments_ids]).to(device)
tokens_tensor = tokens_tensor.to(device)
# 预测所有的tokens
with torch.no_grad():
    # 将文本和句子指示参数输入模型进行预测。
    # 输出结果是一个形状为[1,15,30522]的张量。其中,1代表批次个数,15代表输入句子中的15个单词,30522是词表中单词的个数。
    # 模型的结果表示词表中每个单词在句子中可能出现的概率。
    outputs = model(tokens_tensor, token_type_ids=segments_tensors)
predictions = outputs[0]  # [1, 15, 30522]
# 预测结果:从输出结果中取出[MASK]字符对应的预测索引值。
predicted_index = torch.argmax(predictions[0, masked_index]).item()
# 将预测索引值转换为单词。
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
print('预测词为:', predicted_token)
# 预测词为: li


目录
相关文章
|
4月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
614 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
28天前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
106 9
|
3月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
117 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
2月前
|
机器学习/深度学习 数据可视化 PyTorch
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
986 0
Flow Matching生成模型:从理论基础到Pytorch代码实现
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
99 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
|
4月前
|
机器学习/深度学习 PyTorch 编译器
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
444 17
|
4月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。
|
28天前
|
机器学习/深度学习 算法 机器人
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
【PID】基于人工神经网络的PID控制器,用于更好的系统响应研究(Matlab&Simulink代码实现)
164 15
|
1月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
|
30天前
|
机器学习/深度学习 数据采集 边缘计算
【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)
【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)
104 15

热门文章

最新文章

推荐镜像

更多