Meta让150亿参数语言模型学会从头设计「全新」蛋白质!LeCun:效果惊人

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Meta让150亿参数语言模型学会从头设计「全新」蛋白质!LeCun:效果惊人

Meta让150亿参数语言模型学会从头设计「全新」蛋白质!LeCun:效果惊人

新智元新智元 2022-12-23 13:19 发表于北京



 新智元报道  

编辑:编辑部

【新智元导读】Meta最新力作!经过训练的语言模型直接化身「造物主」,可以设计、生成蛋白质,生命的终极奥秘要被人工智能发现了吗?


AI在生物医学领域再次获得新进展。没错,这次还和蛋白质有关。

不同的是,过去的AI是发现蛋白质结构,这回开始自己设计和生成蛋白质结构了。如果说过去是「检察官」,现在说是进化成了「造物主」也不是不行。

参与本项研究的是Meta的AI研究机构中包括FAIR的蛋白质研究团队。作为在Facebook任职多年的首席AI科学家,Yann LeCun也是第一时间转发了这个自家团队的成果,并给予高度评价。

BioRxiv上的这两篇论文是Meta在蛋白质设计/生成方面的「惊人」的成果。该系统使用模拟退火算法来寻找一个氨基酸序列,该序列的折叠方式符合所需的形状或满足约束条件(如对称性)。

ESM2,原子层级结构预测的模型

你猜的没错,这项研究和这两篇论文的基础,正是不久前由Meta提出的蛋白质预测和发现的大语言模型:ESM2。

这是一个150亿参数的大模型。随着模型从800万个参数扩展到1500万个参数,内部表征中出现的信息能够在原子分辨率下进行三维结构预测。利用大型语言模型来学习进化模式,可以直接从蛋白质序列中端到端地生成准确的结构预测,在保持准确性的同时,预测速度比当前最先进的方法快60倍。事实上,借助于这种新的结构预测能力,Meta在短短两周内用一个由大约2000个GPU组成的集群上,预测出了图谱中超过6亿个宏基因组蛋白质的序列。两篇论文的通信作者,来自Meta AI的Alex Rives表示,ESM2语言模型展现出的通用性不仅超出了天然蛋白质的范围,而且还能够可编程地生成复杂和模块化的蛋白质结构。

蛋白质设计「专用编程语言」

工欲善其事,必先利其器。为了让蛋白质设计和生成更有效率,研究人员在之前成果(主要是ESM2)的基础上,还专门开发了一种面向蛋白质设计的高级编程语言。

论文地址:https://www.biorxiv.org/content/10.1101/2022.12.21.521526v1该研究的主要负责人之一,论文「A high-level programming language for generative protein design」的通讯作者Alex Rives在社交媒体上表示,这个成果,使得对具有复杂和模块化结构的大型蛋白质和复合物的生成进行编程成为可能。论文作者之一、斯坦福大学的研究人员Brian Hie在推特上也对这篇文章的主要研究思路和成果做了自己的解释。总体上讲,这篇文章描述了生成式机器学习如何实现由用于蛋白质设计的高级编程语言控制的复杂蛋白质的模块化设计。

他表示,这篇文章的主要想法不是使用序列或结构的构建块,而是将模块化置于更高的抽象级别,并让黑盒优化生成特定设计。优化的每一步预测原子级结构。与之前的蛋白质设计方法相比,这种新思路产生的方法可以让设计者指定任意的、不可微的约束,范围从指定原子级坐标到蛋白质的抽象设计方案,比如对称设计。对于可编程性来说,约束条件是模块化的,这一点很重要。比如下图就是将同一约束分层应用于两个层次的对称性编程的情况。这些约束也很容易重新组合。比如,可以把对原子坐标的约束和对对称性的约束结合起来。或者可以将不同形式的两级对称性结合起来,为一个不对称的复合结构体编程。

目录
打赏
0
0
0
0
368
分享
相关文章
4轮暴训,Llama 7B击败GPT-4!Meta等让LLM分饰三角自评自进化
【8月更文挑战第20天】近期,Meta等机构提出了一项让大型语言模型(LLM)自我评估与改进的研究,通过“Meta-Rewarding”方法,使模型分饰生成、评估及改进三角色,实现了高效自我迭代。实验证明,经四轮强化训练后,Llama 7B模型性能大幅提升,在多项任务上超越GPT-4等先进模型,展示了LLM自我优化的巨大潜力。详情参阅论文:https://arxiv.org/abs/2407.19594。
87 7
|
9月前
|
8B尺寸达到GPT-4级性能!北大等提出医疗专家模型训练方法
【7月更文挑战第8天】北京大学等研究者提出的新方法缓解了大模型如Llama-3-8B在持续预训练时的“稳定性差距”,通过多轮次训练、高质量子语料库选择和数据混合策略,提升性能和效率。在医疗领域,他们将OpenLlama-3B性能提升至40.7%,并创建的Llama-3-Physician模型达到GPT-4级别。尽管取得突破,该方法在其他模型和领域的适用性仍需探索,且持续预训练仍资源密集。[链接: https://arxiv.org/abs/2406.14833]
133 25
|
11月前
|
8B文字多模态大模型指标逼近GPT4V,字节、华师、华科联合提出TextSquare
【5月更文挑战第10天】TextSquare,由字节跳动、华东师大和华中科技大学联合研发,是新型的文本中心视觉问答模型,借助Square-10M数据集在VQA任务上取得突破。在6个OCRBench等基准上超越现有最佳模型,如GPT4V和Gemini。模型利用视觉问答推理数据增强上下文理解,减少幻觉现象,平均准确率75.1%。但面对复杂问题和泛化能力仍有挑战。[论文链接](https://arxiv.org/abs/2404.12803)
145 4
革命新架构掀翻Transformer!无限上下文处理,2万亿token碾压Llama 2
【4月更文挑战第28天】清华大学研究团队提出了Megalodon,一种针对长序列数据优化的Transformer模型。为解决Transformer的计算复杂度和上下文限制,Megalodon采用了CEMA改进注意力机制,降低计算量和内存需求;引入时间步长归一化层增强稳定性;使用归一化注意力机制提升注意力分配;并借助预归一化与双跳残差配置加速模型收敛。在与Llama 2的对比实验中,Megalodon在70亿参数和2万亿训练token规模下展现出更优性能。论文链接:https://arxiv.org/abs/2404.08801
123 2
Meta让150亿参数语言模型学会从头设计「全新」蛋白质!LeCun:效果惊人(2)
Meta让150亿参数语言模型学会从头设计「全新」蛋白质!LeCun:效果惊人
201 0
世界首个!Meta AI开放6亿+宏基因组蛋白质结构图谱,150亿语言模型用两周完成
世界首个!Meta AI开放6亿+宏基因组蛋白质结构图谱,150亿语言模型用两周完成
215 0
Meta打造首个「蛋白质宇宙」全景图!用150亿参数语言模型,预测了6亿+蛋白质结构
Meta打造首个「蛋白质宇宙」全景图!用150亿参数语言模型,预测了6亿+蛋白质结构
163 0
语言模型参数越多越好?DeepMind用700亿打败自家2800亿,训练优化出「小」模型
语言模型参数越多越好?DeepMind用700亿打败自家2800亿,训练优化出「小」模型
207 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等