m基于神经网络预测模型的室内温度调节控制系统matlab仿真

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: m基于神经网络预测模型的室内温度调节控制系统matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

236084e2021d4ef0306ad467eba8a00f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0e94ece62064c5e19094cb2f11c88baa_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f0b9845915f7f7e1f52b8033c792a263_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b0d13047360dc30eea487fba5c7ad848_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
d61e90edc5672f16191aab9022061169_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
先简单的介绍一下BP神经网络:

7248974589f95e32b76a22bd67629022_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

给定一组样本:

c3e780cf0f74dd74761e050ccf34ed9e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

输入S层的相应单元,A层各单元的激活值为:

d8dc4637d3a1107ec3a6d77a272e7ddf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中,但为了减小在线计算时的计算量,该部分的计算为离线。

   一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。

   许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解。
AI 代码解读

b219f69ff89f5532bcf6a76086a7c8a5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    在模型预测控制(MPC)中,控制信号的确定是通过在每个采样时刻输入序列为 时,最小化代价函数(2)。只有优化输入序列的第一个元素uk)作为系统的输入,在下一个采样时刻k+1,新的优化问题是对于给定的优化控制问题而言的。在这种方法中,终止条件 可以看作是一个当时刻K+N趋于无穷时最小化代价函数的逼近器,但实际上更多的是用于保证闭环的稳定性。模型预测控制方法有一个非线性的缺点,且需要通过在每个采样时刻得到受约束的优化问题,同时需要通过在线计算来实现.



AI 代码解读

3.MATLAB核心程序

%参考轨迹
yr         = zeros(ALL_Times,1);
yr         = func_reference(ALL_Times,CV,OAT,ZT);
 
number1    = 25;
number2    = 16;
Set_Vlaue  = 10;
yout_1     = 0;
cube_define;
 
%%
%循环仿真
%循环仿真3
for k=2:2*ALL_Times-10
    if  k <= ALL_Times%在线辨识学习 
        %控制器
        [yout,Errs,u] = func_controller0(y_1,K,e,Set_Vlaue,u,A0,k,ALL_Times,number1,number2,CV(k),OAT(k),ZT(k));
...........................................................
        %在线神经网络训练
        %Inner network
        for j=1:1:Nums      
            I(j)    = State'*w1(:,j);      
            Iout(j) = 1/(1+exp(-I(j))); %隐含层
        end
        %Output of network
        err_estimate(k) = w2'*Iout; 
        e1(k)           = err_estimate(k)-e(k);   
        %Updata the weight
        w2              = w2d1-(Learn_Rate*0.1*e1(k))*Iout+Alpha*(w2d1-w2d2);  
        for j=1:1:Nums      
            FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; 
        end
        %隐含层权值的更新
        for i=1:1:Nums2      
            for j=1:1:Nums      
                dw1(i,j)=e1(k)*Learn_Rate*FI(j)*w2(j)*State(i);     
            end
        end
        %权值的更新
..........................................................
        %开始实际的工作
        Ind     = k-ALL_Times+2;   
        %被控对象
        yout(Ind) = func_system_model(y_1,u_1,CV(Ind),OAT(Ind),ZT(Ind));
        %控制器输出
.................................................................
        %辨识输出
..............................................    
        %延迟
        %延迟
        State(1)        = yout(Ind);
        State(2)        = yout(Ind-1);
        State(3)        = u(Ind);
        State(4)        = u(Ind-1);
    end
end
AI 代码解读
目录
打赏
0
0
0
1
218
分享
相关文章
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
101 68
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
41 18
|
5月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
126 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章