OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: OmniThink 是浙江大学与阿里通义实验室联合开发的机器写作框架,通过模拟人类迭代扩展和反思过程,生成高质量长篇文章,显著提升知识密度和内容深度。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:OmniThink 通过迭代扩展和反思机制,生成高质量长篇文章,突破传统语言模型的知识边界。
  2. 技术:基于信息树和概念池的结构化信息管理,优化知识密度,提升文章深度和连贯性。
  3. 应用:支持学术写作、新闻报道、教育内容创作等多种场景,生成信息丰富且实用的内容。

正文(附运行示例)

OmniThink 是什么

OmniThink

OmniThink 是由浙江大学和阿里巴巴通义实验室联合开发的机器写作框架,旨在通过模拟人类的迭代扩展和反思过程,突破大型语言模型在机器写作中的知识边界。该框架通过信息树和概念池的结构化组织,逐步深化对主题的理解,生成高质量的长篇文章。

OmniThink 的核心优势在于其独特的迭代扩展和反思机制,能够有效提升生成文章的知识密度,减少冗余信息,同时保持文章的连贯性和深度。实验结果表明,OmniThink 在知识密度、内容丰富度和新颖性方面显著优于传统方法。

OmniThink 的主要功能

  • 知识边界扩展:通过模拟人类学习者逐步深化对主题的理解,OmniThink 能超越模型预定义的知识范围,生成信息丰富且深度更强的内容。
  • 信息深度与实用性提升:解决传统方法中检索信息缺乏深度和实用性的问题,避免生成浅薄、重复和缺乏原创性的文章。
  • 高质量长篇文章生成:在保持连贯性和深度等关键指标的同时,提高文章的知识密度,生成有根据、高质量的长文档。
  • 知识密度指标:引入知识密度(Knowledge Density)指标,衡量生成文章的信息丰富度和独特性,为评估机器写作性能提供了新的视角。
  • 结构化信息管理:通过信息树和概念池组织知识,实现结构化的信息管理,优化长文本生成,减少冗余,提升知识传递效率。
  • 支持多种语言模型:OmniThink 支持多种语言模型作为后端,能根据需求调整参数,提升生成内容的多样性和适应性。

OmniThink 的技术原理

  • 迭代扩展与反思机制:OmniThink 通过模拟人类学习者对主题的逐步深化理解,采用“反思-扩展”机制。在信息获取阶段,框架会分析已有的信息树节点,确定需要进一步扩展的节点,检索相关信息进行更新。随后,通过反思过程对新检索的信息进行分析、过滤和综合,提炼核心见解并更新概念池,为下一步扩展提供指导。
  • 信息树与概念池构建:OmniThink 在信息获取阶段构建信息树和概念池。信息树用于组织和扩展主题相关的知识结构,概念池则存储核心概念和见解,使生成的文章更具逻辑性和深度。
  • 知识密度优化:OmniThink 引入了“知识密度”指标,通过衡量生成文章中独特、有意义信息的比例,优化内容的质量和深度。框架基于 Factscore 工具与 GPT 模型相结合,对生成文章进行原子知识单元分解和去重处理,提升文章的信息丰富度。
  • 模型无关性与灵活性:OmniThink 框架不依赖于特定的语言模型,可以与多种大型语言模型(LLM)集成,具有良好的通用性和扩展性。
  • 多阶段生成流程:OmniThink 的生成流程分为信息获取、大纲构建和文章撰写三个阶段。首先通过迭代扩展和反思构建知识框架,然后生成大纲,最后根据大纲撰写连贯、高质量的文章。

如何运行 OmniThink

1. 环境配置

首先,克隆 OmniThink 的 GitHub 仓库并安装依赖:

conda create -n OmniThink python=3.11
git clone https://github.com/zjunlp/OmniThink.git
cd OmniThink
pip install -r requirement.txt

2. 设置 API 密钥

在运行之前,需要设置 OpenAI 或 Dashscope 的 API 密钥以及搜索 API 密钥:

export OPENAI_API_KEY=YOUR_API_KEY
export SEARCHKEY=YOUR_SEARCHKEY

或者:

export DASHSCOPE_KEY=YOUR_API_KEY
export SEARCHKEY=YOUR_SEARCHKEY

3. 运行生成文章

只需运行以下命令即可生成文章:

sh run.sh

生成的文章、大纲和思维导图将保存在 ./results/ 目录下。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
3天前
|
人工智能 自然语言处理 API
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
OpenDeepResearcher 是一款开源 AI 研究工具,支持异步处理、去重功能和 LLM 驱动的决策,帮助用户高效完成复杂的信息查询和分析任务。
93 18
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
|
2天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
247 13
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
20小时前
|
机器学习/深度学习 人工智能 编解码
Lumina-Image 2.0:上海 AI Lab 开源的统一图像生成模型,支持生成多分辨率、多风格的图像
Lumina-Image 2.0 是上海 AI Lab 开源的高效统一图像生成模型,参数量为26亿,基于扩散模型和Transformer架构,支持多种推理求解器,能生成高质量、多风格的图像。
43 17
Lumina-Image 2.0:上海 AI Lab 开源的统一图像生成模型,支持生成多分辨率、多风格的图像
|
1天前
|
人工智能 安全 开发工具
Repomix:8.1K Star!轻松将整个代码库打包为AI友好格式的开源工具,使代码库更易于AI理解
Repomix 是一款强大的工具,能够将整个代码库打包成AI友好的单个文件,支持多种输出格式和安全检查。
27 9
|
1月前
|
编解码 Cloud Native 算法
通义万相:视觉生成大模型再进化
通义万相是阿里云推出的视觉生成大模型,涵盖图像和视频生成。其2.0版本在文生图和文生视频方面进行了重大升级,采用Diffusion Transformer架构,提升了模型的灵活性和可控性。通过高质量美学标准和多语言支持,大幅增强了画面表现力。此外,视频生成方面引入高压缩比VAE、1080P长视频生成及多样化艺术风格支持,实现了更丰富的创意表达。未来,通义万相将继续探索视觉领域的规模化和泛化,打造更加通用的视觉生成大模型。
|
5月前
|
人工智能 自动驾驶 云栖大会
大模型赋能智能座舱,NVIDIA 深度适配通义千问大模型
9月20日杭州云栖大会上, NVIDIA DRIVE Orin系统级芯片实现了与阿里云通义千问多模态大模型Qwen2-VL的深度适配。阿里云、斑马智行联合NVIDIA英伟达推出舱驾融合大模型解决方案,基于通义大模型开发“能听会看”的智能座舱助理,让车内人员通过语音交流就能操作座舱内的各类应用,享受极致丰富的交互体验。
314 14
|
27天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
180 22
|
2月前
|
关系型数据库 机器人 OLAP
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
PolarDB开源社区推出基于云原生数据仓库AnalyticDB和通义千问大模型的“PolarDB知识问答助手”,实现一站式全链路RAG能力,大幅提升查询效率和问答准确率。该系统整合静态和动态知识库,提供高效的数据检索与查询服务,支持多种场景下的精准回答,并持续优化用户体验。欢迎加入钉群体验并提出宝贵意见。
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
|
2月前
|
开发框架 自然语言处理 JavaScript
千问开源P-MMEval数据集,面向大模型的多语言平行评测集
近期,通义千问团队联合魔搭社区开源的多语言基准测试集 P-MMEval,涵盖了高效的基础和专项能力数据集。
千问开源P-MMEval数据集,面向大模型的多语言平行评测集
|
2月前
|
机器学习/深度学习 人工智能 安全
通义视觉推理大模型QVQ-72B-preview重磅上线
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。

热门文章

最新文章