【中继优化】基于高效局部地图搜索算法实现无人机通信中继位置优化附matlab代码和复现论文

简介: 【中继优化】基于高效局部地图搜索算法实现无人机通信中继位置优化附matlab代码和复现论文

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

本文研究了无线网络中无人驾驶飞行器(UAV)的最佳放置问题。无人机作为一个飞行的无线中继器,为基站(BS)提供覆盖范围的扩展,并为被障碍物遮挡的用户提供容量提升。虽然现有的方法依赖于直接传播链路的潜在阻塞的统计模型,但我们提出了一种能够利用当地地形信息来提供性能保证的方法。所提出的方法允许在最小化到地面终端的传播距离和发现良好的传播条件之间进行最佳权衡。该算法只需要几个传播参数,但它能够避免深度传播阴影,并被证明能够找到全球最佳的无人机位置。只需要对目标区域进行局部探索,而且搜索轨迹的最大长度与地理尺度成线性关系。因此,它适合于在线搜索。与其他基于统计传播模型的定位方法相比,发现有明显的吞吐量提高。

⛄ 部分代码

% Massive simulation


clear

addpath(genpath('lib')),


Nue = 10000;    % <- reduce this number to shorter simulation time (coarser results)


DATA = load('citymap/urbanMapSingleUserK2.mat');

U = DATA.U; PosBS = DATA.PosBS;


DATA = load('citymap/losStatistics.mat');

losStat.Plos = DATA.Plos;

losStat.ElvAngles = DATA.ElvAngles;

clear DATA


load('citymap/topologyK2.mat');


U.K = 2;

if U.K == 2

   U.Alpha = [-21.4, -30.3];

   U.Beta =[-36.92, -38.42];

elseif U.K == 3

   U.Alpha = [-22, -28, -36];

   U.Beta =[-28, -24, -22];

else

   error('K should be 2 or 3.');

end

U.A0 = -20.8; U.B0 = -38.5;

U.A1 = U.Alpha(1); U.B1 = U.Beta(1);

U.A2 = U.Alpha(2); U.B2 = U.Beta(2);



Noise_dBm = -80;

Power_BS_dBm = 33;

Power_UAV_dBm = 33;


U.Noise = 10^(Noise_dBm/10) / 1000; % Watt in linear scale

U.Pb = 10^(Power_BS_dBm/10) / 1000;

U.Pd = 10^(Power_UAV_dBm/10) / 1000;


U.Hbs = 45;     % meter, BS height

U.Hmin = 45;    % meter, minimum UAV operation height

U.Hdrone = 50;  % meter, UAV search height

stepSizeMeter = 5;  % UAV search step size


fun = @(x,y) max(-log2(1 + U.Pd * real(x)), -log2(1 + U.Pb * real(y)));

fun0 = @(x) -log2(1 + U.Pb * x);


% Ergodic capacity

SNRs_dB = -10:2:20; Ks_dB = [9, -Inf];

Rerg = capacity_ergodic(Ks_dB, SNRs_dB);


fun1 = @(x,y) max(- max(0, ppval(spline(SNRs_dB, Rerg(1, :)), 10 * log10(U.Pd * real(x)))), ...

                 - log2(1 + U.Pb * real(y))); % UAV-UE_LOS(K-factor = 9dB,

             

fun2 = @(x,y) max(- max(0, ppval(spline(SNRs_dB, Rerg(2, :)), 10 * log10(U.Pd * real(x)))), ...

                 - log2(1 + U.Pb * real(y))); % UAV-UE_NLOS, Rayleigh fading


%%

N_scheme = 6;


tic


Nue = min(size(Topology, 1), Nue);

Rates0 = zeros(Nue, N_scheme);

strongUserIds = zeros(Nue, 1);

failIds = zeros(Nue, 1);

parfor i = 1:Nue

   

   PosUE = Topology{i}.PosUE;

   Blds = Topology{i}.Blds;

   BldTypes = Topology{i}.BldTypes;

   BldLines = Topology{i}.BldLines;

   BldHeight = Topology{i}.BldHeight;

   Nbld = size(Blds, 1);

   

   los = IsLosK(PosUE, [PosBS, U.Hbs], BldLines, BldHeight, U.Hdrone, BldTypes);

   if los == 1

       strongUserIds(i) = 1;

       % continue    % We are only interested in the case where the direct BS-user link is blocked

   end

   

   urbanMap = struct();

   urbanMap.BldLines = BldLines;

   urbanMap.BldHeight = BldHeight;

   urbanMap.BldTypes = BldTypes;

   

   % Direct BS-user link

   k = round((1 - los) * (U.K - 1) + 1);   % propagation segment index

   d = norm([PosBS, U.Hbs] - [PosUE, 0], 2);

   snr = 10 ^ ((U.Alpha(k) * log10(d) + U.Beta(k)) / 10) / U.Noise;

   F0 = fun0(snr);

   

   try

       % [Fmin3, Xhat3] = finduavpos3d(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       % Fmin3 = min(Fmin3, F0);

       Fmin3 = 0;

       

       [~, Xhat2] = finduavpos(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       los = IsLosK(PosUE, [Xhat2, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       Fmin2 = getcostf2DK_ergodic([Xhat2, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % Fmin2 = min(Fmin2, F0);

       

       [~, Xhat1] = finduavpos1d(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       los = IsLosK(PosUE, [Xhat1, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       Fmin1 = getcostf2DK_ergodic([Xhat1, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);


       % Fmin1 = min(Fmin1, F0);

       

       % [Fmin_exhst, Xhat_exhst] = finduavpos2d_exhst(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap);

       Fmin_exhst = Fmin3;

       

       [~, XhatStat] = finduavposStat(PosUE, PosBS, U, fun, stepSizeMeter, urbanMap, losStat);

       los = IsLosK(PosUE, [XhatStat, U.Hdrone], BldLines, BldHeight, U.Hdrone, BldTypes);

       FminStat = getcostf2DK_ergodic([XhatStat, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, fun1, fun2);

       % FminStat = min(FminStat, F0);

   catch

       Fmin1 = 0;

       Fmin2 = 0;

       Fmin3 = 0;

       Fmin_exhst = 0;

       FminStat = 0;

       failIds(i) = 1;

   end

 

   Rates0(i, :) = - [F0, FminStat, Fmin1, Fmin2, Fmin3, Fmin_exhst];

end


toc


%% Plot results

my_line_styles = {'-', '--', '-.', ':'}.';

Alg_scheme_name = {

   'Direct BS-User linkxx'

   'Probabilistic Alg'

   'Simple Search'

   'Proposed'

   'Proposed (3D)'

   'Exhaustive'

};


schemes_to_show = [1 2 3 4 6];

N_scheme_to_show = length(schemes_to_show);


validUserId = failIds < 1;

Rates = Rates0(validUserId, :);


Nue = size(Rates, 1);


maxdata = max(Rates(:));

Npt = 40;

XI = sort([0.1 0.17 0.3 0.5 (0:1/(Npt - 1 - 4):1) * maxdata], 'ascend');


X_data = zeros(Npt, N_scheme_to_show);

F_data = zeros(Npt, N_scheme_to_show);


for i = 1:N_scheme_to_show

   n = schemes_to_show(i);

   

   r_vec = Rates(:, n);


   [F1,X1] = ksdensity(r_vec, XI, 'function', 'cdf');

   

   X_data(:, i) = X1(:);

   F_data(:, i) = F1;

   

end


figure(1),

h = plot(X_data, F_data,'linewidth', 2);

set(gca, 'FontSize', 14);

legend(Alg_scheme_name{schemes_to_show}, 'location', 'southeast');

xlim([0 ceil(max(Rates(:)))]);

set(gca, 'YTick', 0:0.2:1);

xlabel('bps/Hz');

ylabel('CDF');

tune_figure,

set(h(1), 'linewidth', 2);

set(h(1), 'Marker', '*', 'Markersize', 6);

set(h(1), 'LineStyle', ':');

set(h(2), 'LineStyle', '-.');

set(h(3), 'LineStyle', ':');

set(h(4), 'LineStyle', '-');

set(h(4), 'LineWidth', 3);

set(h(5), 'linestyle', '--');

set(h(5), 'LineWidth', 3);


% ----

schemes_to_show = [1 2 3 4];


figure(2),

rateNoUav = Rates(:, 1);

[~, sortedIndex] = sort(rateNoUav, 'ascend');

low20percentileIndex = sortedIndex(1:round(Nue * 0.2));

high20percentileIndex = sortedIndex(round(Nue * 0.8): end);


RateLow = mean(Rates(low20percentileIndex, schemes_to_show), 1);

RateMean = mean(Rates(:, schemes_to_show), 1);

RateHigh = mean(Rates(high20percentileIndex, schemes_to_show), 1);

h = bar([RateLow

        RateMean

        RateHigh]);

set(gca, 'FontSize', 14);

set(h, 'linewidth', 2);

ylim([0, 10]);

legend(Alg_scheme_name{schemes_to_show}, 'location', 'northwest');

set(gca, 'XTickLabel', {'20th percentile', 'Mean', 'Top 20th percentile'});

set(gca, 'YTick', 0:2:10);

ylabel('Average end-to-end throughput [bps/Hz]');

% label the bars

Xdata = [RateLow

        RateMean

        RateHigh];

bartext = [];

for i = 1:size(Xdata, 1)

   for j = 1:size(Xdata, 2)

       bartext(i, j) = text(i + (j - 2.5) * 0.18, Xdata(i, j) + 0.05, ...

           sprintf('%1.2f', Xdata(i, j)), 'fontsize', 12);

   end

end

% Use the handles TH to modify some properties

set(bartext,'Horizontalalignment','center',...

'verticalalignment','bottom') ;

tune_figure,

[im_hatch,colorlist] = applyhatch_pluscolor(gcf,'\-x./+',0,0,[],150,2,2);


⛄ 运行结果

⛄ 参考文献

[1] Chen J ,  Gesbert D . Efficient Local Map Search Algorithms for the Placement of Flying Relays:, 10.48550/arXiv.1801.03595[P]. 2018.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。