基于深度学习的瓶盖检测系统(Python+YOLOv5深度学习模型+清新界面)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 基于深度学习的瓶盖检测系统(Python+YOLOv5深度学习模型+清新界面)

前言


       对于饮料、医药、食品等生产厂家而言,瓶盖外观缺陷是产品生产制造环节常见的问题,由于对产品包装精细化、品质和连续批量生产的要求越来越高,传统人工检测容易造成漏检、误检,导致不良品流出且效率低,市场对瓶盖原厂质量检测提出了新的挑战。基于AI的全自动瓶盖视觉检测系统的出现,很好地解决了这一难点,成为越来越生产业企业新的选择。瓶盖检测系统既能确保包装质量,能对瓶盖材质进行检测,避免不符合食品安全标准的材料进入生产工序,保障了饮料食品的质量安全。

       本系统基于YOLOv5,采用登录注册进行用户管理,对于图片、视频和摄像头捕获的实时画面,可检测瓶盖的位置,系统支持结果记录、展示和保存,每次检测的结果记录在表格中。对此这里给出博主设计的界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:



       检测类别时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个类别,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       软件的颜值和功能同样重要,首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的瓶盖进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)系统介绍

       基于深度学习的瓶盖检测系统主要用于日常场景中瓶盖的检测识别,也可用于传送带等加工回收场景,检测瓶盖目标在图像中的类别、位置、数目、置信度等;可对图片、视频文件读取的图像,或从摄像头获取的实时画面中的瓶盖进行识别,算法模型可选择替换;系统界面包含用户注册、登录功能,方便用户进行管理和使用;识别结果可视化,结果实时显示并能够进行目标逐个标注、显示和数据展示;画面显示窗口表格记录历史结果,图片结果可点击按钮保存,方便后续查阅使用。



(二)技术特点

        (1)检测算法采用YOLOv5实现,模型可切换更新;

        (2)选择图片、视频或摄像头方式识别瓶盖;

        (3)提供目标数、类别、位置等结果展示、切换和保存功能;

        (4)支持用户登录、注册、管理,界面缩放、可视化等功能;

(三)选择图片识别

       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个结果,以便具体判断某一特定目标。本功能的界面展示如下图所示:



(四)视频识别效果展示

       很多时候我们需要识别一段视频中的多个瓶盖,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别多个瓶盖,并将瓶盖的分类和计数结果记录在右下角表格中,效果如下图所示:




2. 瓶盖数据集及训练


       本文实验的瓶盖数据集包含正面、侧面,不同光照背景,以及不同类型的瓶盖的图像。其中,训练集1601张图片,验证集105张图片,测试集67张图片,共计1773张图片,选取部分数据部分样本数据集如图所示。



       每张图像都包含一个标准文件,在.txt的文本文件的每一行都描述了一个边界框。检测框的坐标值经过图像尺寸归一化处理(即值介于 0 和 1 之间)



       data.yaml 是数据配置文件,记录数据集的详细信息。有以下参数:

       1、train、test和val:训练集、测试集和验证集的位置。

       2、nc:数据集中的类别数。

       3、names:数据集中类别的名称。

python
train: ./BottleCap/images/train
val: ./BottleCap/images/valid
test: ./BottleCap/images/test
nc: 1
names: ['bottle-cap']


       结果如下:



       使用 train.py 训练:打开此代码,查看def parse_opt()。

python
parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default='/BottleCap/bottle-cap.yaml', help='garbage.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=2, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument('--logdir', type=str, default='BottleCap/logs', help='logging directory')
    parser.add_argument('--workers', type=int, default=1, help='maximum number of dataloader workers')
    opt = parser.parse_args()


       weights 参数是预训练权重,如果这里设置为空的话,重新训练模型。

       参数是模型配置文件,要使用自定义网络,请创建一个新文件并在运行时使用cfg标志指定它。

       data 参数是数据集配置文件,里面主要存放数据集的类别和路径。

       hyp 参数是超参数配置文件,超参数里面包含了大量的参数信息。默认的data/hyp.scratch.yaml如下。

python
lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2  # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 0.05  # box loss gain
cls: 0.5  # cls loss gain
cls_pw: 1.0  # cls BCELoss positive_weight
obj: 1.0  # obj loss gain (scale with pixels)
obj_pw: 1.0  # obj BCELoss positive_weight
iou_t: 0.20  # IoU training threshold
anchor_t: 4.0  # anchor-multiple threshold
# anchors: 0  # anchors per output grid (0 to ignore)
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.0  # image mixup (probability)


       epochs 参数是训练轮数,默认300 次。

       batch_size 参数是每批次输入的数据量,取值为 -1 ,将自动调节。

       imgsize、img、img-size,训练集和测试集图片的大小,默认 640*640。

       以上就是YOLOv5的整体介绍,接下来进行训练。本项目使用Yolov5训练了一个瓶盖检测模型,在笔记本的3070显卡下训练了300 epoch,在终端运行的截图如下:



       在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练舰船类识别的模型训练曲线图。



       一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。



       以PR-curve为例,你可以看到我们的模型在验证集上的均值平均准确率为0.959。


3. 瓶盖检测识别


       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,运行testPicture.py从而得到预测结果

python
if __name__ == '__main__':
    img_path = "./UI_rec/test_/20220410_024444_jpg.rf.c7a82c73f24f2212609a325acbe6e169.jpg"
    image = cv_imread(img_path)
    image = cv2.resize(image, (850, 500))
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    pred, useTime = predict(img)
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
            label = '%s %.2f' % (names[int(cls)], conf)
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
7天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
101 66
|
8天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
40 5
|
25天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
110 5
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
81 16
|
17天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
77 19
|
17天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
69 7
|
27天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
27天前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。
|
27天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。
|
28天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的深度学习模型及其在图像识别中的优势和面临的挑战。通过具体案例分析,揭示了深度学习如何推动图像识别技术的边界,并讨论了未来可能的发展方向。
42 4

热门文章

最新文章