前言
近年来人脸识别技术落地势头迅猛,被广泛应用于公共安全、金融支付、交通出行等领域。人脸识别技术在落地应用过程中,也暴露出侵犯隐私、安全风险、过渡收集等问题,屡屡成为社会焦点。人脸活体检测的起因是成像传感器在面对纸张打印、视频重放、3D模具等物理呈现的假人脸时无法识别成像的真实性,从而假人脸通过人脸识别系统,受到非法入侵,导致人脸识别系统在金融、支付及商业等应用场景存在局限性,这使得人脸活体检测引起了广泛的社会关注。为提升人脸识别的安全性,保障客户的业务安全,需要在识别前检测是否属于真实人脸,即检测当前画面中到底为虚假欺骗的人脸还是真实的人脸,为人脸登录、注册等环节增加多层保障。
本系统基于YOLOv5,对于图片、视频和摄像头捕获的实时画面,可检测人脸属于真实或者虚假情况,系统支持结果记录、展示和保存,每次检测的结果记录在表格中。对此这里给出博主设计的界面,这回界面采用了半透明的UI背景,有种科技简约的感觉,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:
检测类别时的界面截图(点击图片可放大)如下图,可识别画面中存在的多张人脸,也可开启摄像头或视频检测:
详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。
1. 效果演示
我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的人脸进行虚假识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。
(一)系统介绍
人脸活体检测系统主要用于日常场景中活体人脸检测,区分真实人脸和虚假人脸数目、位置、预测置信度等;连接摄像头设备可开启实时检测功能,另外对图片、视频等文件中的活体人脸情况也可进行测试和检测;登录系统提供用户注册、登录、管理功能;训练和调优的模型可有效检测真实人脸,模型可选择切换;可选择单个目标进行单独显示和标注,结果一键保存。
(二)主要特点
(1)检测算法采用YOLOv5深度学习模型,便捷式训练和切换;
(2)选择图片、视频或摄像头方式检测真实与虚假人脸;
(3)界面基于PyQt5实现,结果展示、切换和保存功能;
(4)支持用户登录、注册、管理,界面缩放、可视化等功能;
(5)提供训练数据集和代码,可重新进行训练;
(三)用户注册登录界面
这里设计了一个登录界面,界面还是参考了当前流行的UI设计,可以注册账号和密码,然后进行登录。
(四)选择图片识别
系统中可选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个结果,以便具体判断某一特定目标。本功能的界面展示如下图所示:
(五)视频识别效果展示
对于需要识别一段视频中的多个人脸,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别多个人脸,并将人脸检测的分类和计数结果记录在左下角表格中,效果如下图所示:
(六)摄像头检测效果展示
在真实场景中,我们往往利用摄像头获取实时画面,同时需要对人脸进行活体识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的人脸活体,识别结果展示如下图:
2. 人脸活体数据集及训练
这里我们使用的人脸活体识别数据集,包含真实与虚假两个类别,每张图片除包括类别标签外,还有一个标注的物体边框(Bounding Box),其部分图片及标注如下图所示。
每张图像均提供了图像类标记信息,训练数据集具有3609张图片,验证集766张,测试集145张,共计4520张图像,部分图片的截图如下图所示。
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图分别为博主训练人脸活体识别的模型训练图和曲线图。
一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。
在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:
python def plot_one_box(img, x, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def predict(img): img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() img /= 255.0 if img.ndimension() == 3: img = img.unsqueeze(0) t1 = time_synchronized() pred = model(img, augment=False)[0] pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() InferNms = round((t2 - t1), 2) return pred, InferNms
训练完成就可以进行预测,得到预测结果我们便可以将帧图像中的人脸活体框出,然后在图片上用opencv绘图操作,输出人脸活体的类别及人脸的预测分数。以下是读取一个人脸活体图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。
python if __name__ == '__main__': # video_path = 0 video_path = "./UI_rec/test_/人脸活体检测.mp4" # 初始化视频流 vs = cv2.VideoCapture(video_path) (W, H) = (None, None) frameIndex = 0 # 视频帧数 try: prop = cv2.CAP_PROP_FRAME_COUNT total = int(vs.get(prop)) # print("[INFO] 视频总帧数:{}".format(total)) # 若读取失败,报错退出 except: print("[INFO] could not determine # of frames in video") print("[INFO] no approx. completion time can be provided") total = -1 fourcc = cv2.VideoWriter_fourcc(*'XVID') ret, frame = vs.read() vw = frame.shape[1] vh = frame.shape[0] print("[INFO] 视频尺寸:{} * {}".format(vw, vh)) output_video = cv2.VideoWriter("./results.avi", fourcc, 20.0, (vw, vh)) # 处理后的视频对象 # 遍历视频帧进行检测 while True: # 从视频文件中逐帧读取画面 (grabbed, image) = vs.read() # 若grabbed为空,表示视频到达最后一帧,退出 if not grabbed: print("[INFO] 运行结束...") output_video.release() vs.release() exit() # 获取画面长宽 if W is None or H is None: (H, W) = image.shape[:2] image = cv2.resize(image, (850, 500)) img0 = image.copy() img = letterbox(img0, new_shape=imgsz)[0] img = np.stack(img, 0) img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) pred, useTime = predict(img) det = pred[0] p, s, im0 = None, '', img0 if det is not None and len(det): # 如果有检测信息则进入 det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round() # 把图像缩放至im0的尺寸 number_i = 0 # 类别预编号 detInfo = [] for *xyxy, conf, cls in reversed(det): # 遍历检测信息 c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])) # 将检测信息添加到字典中 detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf]) number_i += 1 # 编号数+1 label = '%s %.2f' % (names[int(cls)], conf) # 画出检测到的目标物 plot_one_box(image, xyxy, label=label, color=colors[int(cls)]) # 实时显示检测画面 cv2.imshow('Stream', image) image = cv2.resize(image, (vw, vh)) output_video.write(image) # 保存标记后的视频 if cv2.waitKey(1) & 0xFF == ord('q'): break # print("FPS:{}".format(int(0.6/(end-start)))) frameIndex += 1
执行得到的结果如下图所示,图中人脸的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。